start


Start
Web-Artikel
Lexikon
Vorträge
Ausbildung
Essays
Rhetorik
Links
Autor
Kontakt

Lexikon - C 2 Lexikon - D 1

Astro-Lexikon C 3


pdf CC
pdf A-ZA-Z

CNO-Zyklus

Ein wesentlicher Mechanismus zur Energiegewinnung aus thermonuklearer Fusion (siehe diesen Link für Details) in massearmen bis mittelschweren Sternen. In der Sonne ist der CNO-Zyklus (auch Bethe-Weizsäcker-Zyklus genannt) nur marginal relevant. Die Kernfusionsreaktionen beim CNO-Zyklus sind heterogen, d.h. es verschmelzen immer Kerne unterschiedlicher Elemente miteinander.

Comptonisierung
Comptonisierung

Unter Comptonisierung versteht man einen speziellen Vorgang, bei dem Strahlung durch Streung an einem Teilchen Energie gewinnt.

Etwas genauer gesagt...

Comptonisierung (engl. Comptonization) ist ein weit verbreiteter Begriff in der Astronomie und ist ein Ersatzwort für inverse Compton-Streuung (oft kurz IC). Etwas komplizierter formuliert als zu Beginn wird aus niederenergetischer Strahlung durch die Streuung an hochenergetischen Teilchen (z.B. ultrarelativistischen Elektronen) hochenergetische Strahlung. Man beschreibt Comptonisierung mathematisch mit einer komplizierten Integro-Differentialgleichung, der Kompaneets-Gleichung, die man numerisch für vorgegebene Elektronenverteilungen, Eingangsstrahlung und Geometrien lösen muss. Numerische Comptonisierung ist ein außerordentlich kompliziertes Gebiet der theoretischen Astrophysik. Lösungen findet man dabei nur durch starke Vereinfachungen oder Ausnutzung von Symmetrien.

Bezug zur Astrophysik

Der Comptonisierungsprozess spielt vor allem bei der Akkretion auf stellare Schwarze Löcher in Röntgendoppelsternen und supermassereiche Schwarze Löcher in Aktiven Galaktischen Kernen (AGN) eine gewichtige Rolle. In einer heißen Korona, die sich vermutlich sehr nahe am Ereignishorizont des Loches befindet, treffen weiche 'Saatphotonen' der kalten Standardscheibe oder weiche Photonen der kosmischen Hintergrundstrahlung (CMBR) auf heiße, ultrarelativistische Elektronen. Dabei werden sie zu hohen Energien (Röntgen- oder Gammaquanten) hin gestreut und kühlen auf diese Weise das heiße Plasma der Korona. Man sagt, die niederenergetische Eingangsstrahlung der Umgebung wurde Comptonisiert. Die Abbildung oben illustriert schematisch den Streuakt. Links laufen ein hochenergetisches ('heißes') Elektron und ein niederenergetisches Photon (rot dargestellt) ein. Im Zentrum ereignet sich die inverse Compton-Streuung. Danach laufen rechts ein hochenergetisches Photon (blau dargestellt) und ein niederenergetisches ('gekühltes') Elektron aus.

Comptonisierte Spektren

Im Spektrum offenbart sich dieser Strahlungsprozess als breites Kontinuum vom keV- bis in den MeV-Bereich (oder mehr) hinein. Zu hohen Energien gibt es im Spektrum einen charakteristischen, exponentiellen Abfall (engl. exponential cut-off), aus dessen Lage man direkt die Plasmatemperatur der Korona ableiten kann!
Die Dynamik und Morphologie von Akkretionsflüssen wird entscheidend geprägt von Magnetfeldern. Das Plasma in Akkretionsscheiben lässt sich wie eine geladene Flüssigkeit beschreiben. Das ist die Domäne der Magnetohydrodynamik, einer elektrodynamischen Erweiterung der Navier-Stokes Gleichungen der Hydrodynamik. Magnetfelder sind in heißen Quellen allgegenwärtig: Sie werden vom Plasma mitgeschleppt, deformiert und befinden sich auch vor dem galaktischen Hintergrund. Deshalb kommt es zur Emission von Synchrotronstrahlung, wenn geladene Spezies des Plasmas in Magnetfeldern beschleunigt werden. Diese Strahlung hat einen Bezug zur Comptonisierung. Denn auch die Synchrotronstrahlung kann die erforderlichen Saatphotonen stellen, die Comptonisiert werden. Wenn an dem Plasma, das die Synchrotronstrahlung emittiert selbst die Comptonisierung stattfindet, spricht man von Synchrotron Selbst-Comptonisierung (engl. synchrotron self-compton, SSC). Im Spektrum lässt sich das identifizieren, weil neben dem charakteristischen, niederenergetischen 'Synchrotronbuckel' ein hochenergetischer 'Comptonisierungsbuckel' auftritt. Diese Spektren beobachtet man insbesondere bei einigen Jets von AGN. Der Synchrotronbuckel befindet sich hier im Radiobereich, während man den Comptonisierungsbuckel im Röntgenbereich beobachtet.
Wie angedeutet, spielen die heißen Elektronen die Rolle der Streuzentren für die Comptonisierung in der Korona. Interessant ist die Frage, welche Ansätze für die Elektronenverteilungen gemacht werden können. Elektronenverteilungen geben die Anzahl der Elektronen - die Häufigkeit - über ihrer Geschwindigkeit oder besser ihrer Energie wider. In der klassischen Gastheorie kennt man die Maxwell-Verteilung. Sie ordnet jedem Geschwindigkeitswert eine bestimmte Anzahl an Gasteilchen zu. Typischerweise steigt die Maxwell-Verteilung steil an, fällt wieder ab und zeigt einen langen aber flachen Ausläufer der Verteilung bei hohen Geschwindigkeiten/Energien: den 'Maxwell-Schwanz' (engl. Maxwellian tail). Die Elektronen in der Korona verhalten sich bei den typischen, hohen Koronatemperaturen von 105 bis 107 Kelvin nicht mehr wie ein klassisches Maxwell-Gas. Sie sind sehr schnell, d.h. relativistisch. Ist die Elektronenverteilung thermisch beschreibt man sie mit einer relativistischen Maxwell-Verteilung. Die Emission dieser Verteilung heißt in der Astrophysik Zyklotronstrahlung (engl. cyclotron radiation). Ist die Elektronenverteilung nicht-thermisch und ultrarelativistisch, verwendet man Potenzgesetze, die bei kleinen und hohen Energien abgeschnitten werden. Erst diese nicht-thermische Emission ist die Synchrotronstrahlung (engl. synchrotron radiation).
In kosmischen Quellen findet man häufig beide Strahlungsformen. Solche Modelle werden für das Zentrum der Milchstraße angewendet, um die Beobachtungsdaten verschiedener Spektralbereich anzupassen. Bei der kompakten Radioquelle Sgr A* befindet sich ein supermassereiches Schwarzes Loch von drei bis vier Millionen Sonnenmassen. Es wird kaum mit Gas versorgt, um zu akkretieren. Deshalb ist der Strahlungsfluss stark unterdrückt - eine große Herausforderung für die Theoretiker.

Cosmon

Dies ist die Interpretation des skalaren Feldes der Quintessenz als sehr leichtes Teilchen. Man findet es auch eingedeutscht unter der Bezeichnung Kosmon.

C-Prozess

Der C-Prozess, meist eher Kohlenstoff-Brennen genannt, ist ein wichtiger Mechanismus zur Energiegewinnung aus thermonuklearer Fusion (siehe diesen Link für Details) in mittelschweren Sternen ab etwa vier Sonnenmassen.
Das C bezieht sich auf das Element Kohlenstoff, das bei diesen Reaktionen fusioniert wird. Die Asche dieser Prozesse sind im Wesentlichen Sauerstoff (O), Natrium (Na), Neon (Ne) und Magnesium (Mg).

pdf CC
pdf A-ZA-Z

nach oben

Lexikon - C 2 Lexikon - D 1


Start - Web-Artikel - Lexikon - Vorträge - Ausbildung - Essays - Rhetorik - Links - Autor - Kontakt
Andreas Müller © Andreas Müller, August 2007

Index

A
Abbremsparameter
ADAF
ADD-Szenario
ADM-Formalismus
AdS/CFT-Korrespondenz
AGB-Stern
Äquivalenzprinzip
Akkretion
Aktiver Galaktischer Kern
Alfvén-Geschwindigkeit
Alfvén-Zahl
Allgemeine Relativitätstheorie
Alpha-Zerfall
AMR
anthropisches Prinzip
Antigravitation
Antimaterie
Apastron
Apertursynthese
Aphel
Apogäum
Astronomie
Astronomische Einheit
asymptotisch flach
Auflösungsvermögen
Axion
AXP
B
Balbus-Hawley- Instabilität
Bardeen-Beobachter
Baryogenese
Baryonen
baryonische Materie
Bekenstein-Hawking- Entropie
Beobachter
Beta-Zerfall
Bezugssystem
Bianchi-Identitäten
Big Bang
Big Bounce
Big Crunch
Big Rip
Big Whimper
Birkhoff-Theorem
Blandford-Payne- Szenario
Blandford-Znajek- Mechanismus
Blauverschiebung
Blazar
BL Lac Objekt
Bogenminute
Bogensekunde
Bosonen
Bosonenstern
Boyer-Lindquist- Koordinaten
Bran
Brans-Dicke- Theorie
Brauner Zwerg
Brill-Wellen
Bulk
C
Carter-Konstante
Casimir-Effekt
Cauchy-Fläche
Cepheiden
Cerenkov-Strahlung
Chandrasekhar-Grenze
Chaplygin-Gas
Chiralität
Christoffel-Symbol
CMB
CNO-Zyklus
Comptonisierung
Cosmon
C-Prozess
D
Deep Fields
Derricks Theorem
de-Sitter- Kosmos
DGP-Szenario
Diffeomorphismus
differenzielle Rotation
Distanzmodul
Dodekaeder-Universum
Doppler-Effekt
Drei-Kelvin-Strahlung
Dunkle Energie
Dunkle Materie
E
Eddington-Finkelstein- Koordinaten
Eddington-Leuchtkraft
Effektivtemperatur
Eichtheorie
Einstein-Ring
Einstein-Rosen- Brücke
Einstein-Tensor
Eisenlinie
Eklipse
Ekliptik
Ekpyrotisches Modell
Elektromagnetismus
Elektronenvolt
elektroschwache Theorie
Elementarladung
Energie
Energiebedingungen
Energie-Impuls-Tensor
Entfernungsmodul
eos
eos-Parameter
Epizykel
Ereignishorizont
erg
Ergosphäre
eV
Extinktion
Extradimension
extragalaktisch
extrasolar
extraterrestrisch
Exzentrizität
F
Falschfarbenbild
Fanaroff-Riley- Klassifikation
Faraday-Rotation
Farbindex
Farbladung
Farbsupraleitung
Feldgleichungen
Fermi-Beschleunigung
Fermionen
Fermionenstern
Fernparallelismus
Feynman-Diagramm
FFO
FIDO
Flachheitsproblem
FLRW-Kosmologie
Fluchtgeschwindigkeit
Frame-Dragging
f(R)-Gravitation
Friedmann-Weltmodell
G
Galaktischer Schwarz-Loch-Kandidat
Galaxie
Gamma Ray Burst
Gamma-Zerfall
Geodäte
Geometrisierte Einheiten
Geometrodynamik
Gezeitenkräfte
Gezeitenradius
Gluonen
Grad
Granulation
Gravastern
Gravitation
Gravitationskollaps
Gravitationskühlung
Gravitationslinse
Gravitationsradius
Gravitations- rotverschiebung
Gravitationswellen
Gravitomagnetismus
Graviton
GRBR
Große Vereinheitlichte Theorien
Gruppe
GUT
GZK-cutoff
H
Hadronen
Hadronen-Ära
Hamilton-Jacobi- Formalismus
Harvard-Klassifikation
Hauptreihe
Hawking-Strahlung
Hawking-Temperatur
Helizität
Helligkeit
Herbig-Haro- Objekt
Hertzsprung-Russell- Diagramm
Hierarchieproblem
Higgs-Teilchen
Hilbert-Raum
Hintergrundmetrik
Hintergrundstrahlung
HLX
HMXB
Holostern
Homogenitätsproblem
Horizont
Horizontproblem
Horn-Universum
Hubble-Gesetz
Hubble-Klassifikation
Hubble-Konstante
Hydrodynamik
hydrostatisches Gleichgewicht
Hyperladung
Hypernova
Hyperonen
I
IC
Inertialsystem
Inflation
Inflaton
intergalaktisch
intermediate-mass black hole
interplanetar
interstellar
Isometrien
Isospin
Isotop
ITER
J
Jahreszeiten
Jansky
Jeans-Masse
Jet
K
Kaluza-Klein-Theorie
Kaup-Grenzmasse
Kaonen
Kataklysmische Veränderliche
Keine-Haare- Theorem
Kepler-Gesetze
Kerr-de-Sitter- Lösung
Kerr-Lösung
Kerr-Newman- de-Sitter- Lösung
Kerr-Newman- Lösung
Kerr-Schild- Koordinaten
Killing-Felder
Killing-Tensor
K-Korrektur
Koinzidenzproblem
Kollapsar
Kompaktes Objekt
Kompaktheit
Kompaktifizierung
Kompaneets-Gleichung
konforme Transformation
Kongruenz
Koordinatensingularität
Kopenhagener Deutung
Korona
Korrespondenzprinzip
Kosmische Strahlung
Kosmische Strings
Kosmographie
Kosmologie
Kosmologische Konstante
Kosmologisches Prinzip
kovariante Ableitung
Kovarianzprinzip
Kreisbeschleuniger
Kretschmann-Skalar
Krümmungstensor
Kruskal-Lösung
Kugelsternhaufen
L
Laborsystem
Ladung
Lagrange-Punkte
Lambda-Universum
Lapse-Funktion
Laserleitstern
Lense-Thirring- Effekt
Leptonen
Leptonen-Ära
Leptoquarks
Leuchtkraft
Leuchtkraftdistanz
Levi-Civita- Zusammenhang
Licht
Lichtjahr
Lichtkurve
Lie-Ableitung
Linearbeschleuniger
LINER
Linienelement
LIRG
LMXB
LNRF
Lokale Gruppe
Loop-Quantengravitation
Lorentz-Faktor
Lorentzgruppe
Lorentzinvarianz
Lorentz-Kontraktion
Lorentz-Transformation
Lundquist-Zahl
Luxon
M
Machscher Kegel
Machsches Prinzip
Machzahl
Magnetar
magnetische Rotationsinstabilität
Magnetohydrodynamik
Magnitude
marginal gebundene Bahn
marginal stabile Bahn
Markariangalaxie
Maxwell-Tensor
Membran-Paradigma
Mesonen
Metall
Metrik
Mikroblazar
Mikrolinse
Mikroquasar
Milchstraße
Minkowski-Metrik
Missing-Mass- Problem
mittelschwere Schwarze Löcher
MOND
Monopolproblem
Morphismus
M-Theorie
Myonen
N
Neutrino
Neutronenreaktionen
Neutronenstern
Newtonsche Gravitation
No-Hair-Theorem
Nova
Nukleon
Nukleosynthese
Nullgeodäte
O
Öffnung
Olbers-Paradoxon
O-Prozess
Oppenheimer-Volkoff- Grenze
optische Tiefe
Orthogonalität
P
Paradoxon
Paralleluniversum
Parsec
partielle Ableitung
Pauli-Prinzip
Penrose-Diagramm
Penrose-Prozess
Pentaquark
Periastron
Perigäum
Perihel
periodisch
persistent
Petrov-Klassifikation
PG1159-Sterne
Phantom-Energie
Photon
Photonenorbit
Photosphäre
Pion
Pioneer-Anomalie
Planck-Ära
Planckscher Strahler
Planck-Skala
Planet
Planetarische Nebel
Poincarégruppe
Poincaré- Transformation
Polytrop
Population
Post-Newtonsche Approximation
Poynting-Fluss
pp-Kette
p-Prozess
Prandtl-Zahl
primordiale Schwarze Löcher
Prinzip minimaler gravitativer Kopplung
Protostern
Pseudo-Newtonsche Gravitation
Pulsar
Pulsierendes Universum
Pyknonukleare Reaktionen
Q
QPO
Quant
Quantenchromodynamik
Quantenelektrodynamik
Quantenfeldtheorie
Quantengravitation
Quantenkosmologie
Quantenschaum
Quantensprung
Quantentheorie
Quantenvakuum
Quantenzahlen
Quark-Ära
Quark-Gluonen- Plasma
Quarks
Quarkstern
Quasar
quasi-periodisch
Quasi-periodische Oszillationen
Quelle
Quintessenz
R
Radioaktivität
Radiogalaxie
Radion
Randall-Sundrum- Modelle
Randverdunklung
Raumzeit
Rayleigh-Jeans- Strahlungsformel
Ray Tracing
Reichweite
Reionisation
Reissner-Nordstrøm- de-Sitter- Lösung
Reissner-Nordstrøm- Lösung
Rekombination
relativistisch
Relativitätsprinzip
Relativitätstheorie
Renormierung
Reverberation Mapping
Reynolds-Zahl
RGB-Bild
Ricci-Tensor
Riemann-Tensor
Ringsingularität
Robertson-Walker- Metrik
Robinson-Theorem
Roche-Volumen
Röntgendoppelstern
Roter Riese
Roter Zwerg
Rotverschiebung
Rotverschiebungsfaktor
r-Prozess
RRAT
RR Lyrae-Sterne
Ruhesystem
S
Schallgeschwindigkeit
scheinbare Größe
Schleifen- Quantengravitation
Schwache Wechselwirkung
Schwarzer Körper
Schwarzer Zwerg
Schwarzes Loch
Schwarzschild-de-Sitter- Lösung
Schwarzschild-Lösung
Schwarzschild-Radius
Schwerkraft
Seltsamer Stern
Seltsamkeit
Seyfert-Galaxie
Singularität
skalares Boson
SNR
Soft Gamma-Ray Repeater
Sonne
Spektraltyp
Spezialität
Spezielle Relativitätstheorie
Spin
Spin-Netzwerk
Spinschaum
Spin-Statistik-Theorem
Spintessenz
s-Prozess
Standardkerzen
Standardmodell
Standardscheibe
Starke Wechselwirkung
Statisches Universum
Staubtorus
Stefan-Boltzmann- Gesetz
stellare Schwarze Löcher
Stern
Sternentstehung
Strange Star
Stringtheorien
Subraum
Supergravitation
supermassereiche Schwarze Löcher
Supernova
Supernovaremnant
Superstringtheorie
Supersymmetrie
Symbiotische Sterne
Symmetrie
Symmetriebrechung
Symmetriegruppe
Synchrotron
Synchrotronstrahlung
Synchrozyklotron
T
Tachyon
Tagbogen
Tardyon
Teilchen
Teilchenbeschleuniger
Tensorboson
Tensoren
Tetraden
Tetraquark
TeVeS
Thermodynamik
thermonukleare Fusion
Tiefenfeldbeobachtung
Tierkreis
TNO
Topologie
topologische Defekte
Torsionstensor
Trägheit
transient
Transit
Triple-Alpha-Prozess
T Tauri Stern
Tunneleffekt
U
ULIRG
ULX
Unifikation
Unitarität
Universum
Unruh-Effekt
Urknall
V
Vakuum
Vakuumstern
Vektorboson
Velapulsar
Veränderliche
Vereinheitlichung
Viele-Welten- Theorie
VLA
VLBI
VLT
VLTI
Voids
VSOP
W
Walker-Penrose- Theorem
Weakonen
Weinberg-Winkel
Weiße Löcher
Weißer Zwerg
Wellenfunktion
Weylsches Postulat
Weyl-Tensor
Wheeler-DeWitt- Gleichung
Wiensche Strahlungsformel
Wilson-Loop
WIMP
Wolf-Rayet-Stern
w-Parameter
Wurmlöcher
X
X-Bosonen
X-Kraft
X-ray burster
Y
Y-Bosonen
Yerkes- Leuchtkraftklassen
YSO
Yukawa-Potential
Z
ZAMO
Zeit
Zeitdilatation
Zodiakallicht
Zustandsgleichung
Zustandsgröße
Zwerge
Zwergplanet
Zwillingsparadoxon
Zyklisches Universum
Zyklotron