Start Web-Artikel Lexikon Vorträge Ausbildung Essays Rhetorik Links Autor Kontakt |
Astro-Lexikon D 3 Dunkle Energie
Einführung: Licht & Materie Um diesen Begriff erklären zu können, muss weiter ausgeholt werden: Betrachtet der Mensch seine Umwelt, so ist er umgeben von Licht und Materie. Die Physik entwickelt sehr überzeugende Modelle, was man sich unter Licht und Materie vorstellen muss: Licht ist elektromagnetische Strahlung. Seit der klassischen Elektrodynamik, die im 19. Jahrhundert entdeckt wurde, ist das bekannt. Mit den Methoden der Quantentheorie wurde die Quantisierung des Lichts in Photonen entdeckt. Materie hingegen ist aus äußerst kleinen Teilchen aufgebaut, den Quarks und Leptonen. Die starke Kraft hält die Quarks zusammen, so dass sie Bausteine komplexerer Teilchen werden. So bestehen Protonen und Neutronen, die Teilchen im Atomkern, aus je drei Quarks. Die Materie in unserem alltäglichen Umfeld besteht ausschließlich aus Quarks und Leptonen. Sie ist baryonisch - wie die Physiker sagen. Anmerkung: Präziser wäre es, Materie in eine hadronische und eine leptonische Form zu klassifizieren. Noch eine Zutat: Dunkle Materie Als ob diese Physik von Licht und Materie nicht schon kompliziert genug wäre, entdeckten die Astronomen die Notwendigkeit einer Materieform, die nicht (oder sehr schwach) leuchtet. Sie bekam den Namen Dunkle Materie. Anfang des 20. Jahrhunderts wurde anhand der Rotation von Galaxien erkannt, dass die leuchtende Materie (Sterne, Gas und Staub) nicht ausreicht, um das Rotationsverhalten zu erklären. Seither können Astronomen immer wieder bestätigen, dass es Dunkle Materie geben muss. Kandidaten für Dunkle Materie sind schwere Teilchen, die nicht oder kaum elektromagnetisch strahlen und nur schwach wechselwirken. Diese Teilchenklasse heißt WIMPs (engl. weakly interacting heavy particles). Weitere Materieformen, die zur Dunklen Materie beitragen könnten, sind supersymmetrische Teilchen. Bislang wurde zwar keines gesichert nachgewiesen oder experimentell in Teilchenbeschleunigern hergestellt, aber es gibt ein paar Hinweise aus der Hochenergiephysik und Stringtheorie, dass die Supersymmetrie in der Natur eine Rolle spielt. Und endlich: Dunkle Energie Kommen wir nun über den Umweg des (halbwegs) Bekannten zum völlig Unbekannten, zur Dunklen Energie. Die Bezeichnung Dunkle Energie (engl. dark energy) wurde von dem Kosmologen Michael S. Turner (Universität Chicago, USA) im Jahr 1990 erfunden. Dunkle Energie meint eine Energieform im Universum, die weder baryonischer Natur ist, noch mit der Dunklen Materie identifiziert werden kann. Sie ist dunkel, weil sie sich nicht durch elektromagnetische Strahlung bemerkbar macht. Die Dunkle Energie tritt dadurch in Erscheinung, dass sie die Dynamik des Universums signifikant beeinflusst. Die Dunkle Energie sorgt für die kosmische Expansion! Wir wissen von der Dunklen Energie, weil die sichtbaren Objekte im Universum (Galaxien, Strahlung) die Expansion anzeigen und indirekt auf etwa Dunkles schließen lassen. Die Methoden der Astronomie erlauben es sogar, die Anteile der baryonischen und Dunklen Materie mit demjenigen der Dunklen Energie zu vergleichen. Das Resultat ist, sie mit über zwei Dritteln den größten Anteil ausmacht: Dunkle Energie dominiert das (späte) Universum! Formen von Dunkler Energie Die Dunkle Energie ist demnach ein wichtiger physikalischer Bestandteil der modernen kosmologischen Modelle. Es ist allerdings nicht klar, worum es sich genau bei der Dunklen Energie physikalisch handelt: Die physikalische Natur der Dunklen Energie ist unklar! Es wurden bisher verschiedene Quellen für Dunkle Energie vorgeschlagen: kosmologische Konstante Λ
Die historisch zuerst entdeckte Form, die man im Nachhinein als Dunkle Energie bezeichnen muss, wurde von
Albert Einstein (1879 - 1955) im Jahr 1917 vorgeschlagen. Er führte in den Feldgleichungen
seiner Allgemeinen Relativitätstheorie (ART) den so genannten Lambda-Terme
(manchmal auch Λ-Glied genannt) ein. Dieses Lambda erweiterte die rechte Seite der Feldgleichung dort, wo der
Energie-Impuls-Tensor steht. Dieser kosmologische Parameter beeinflusst
die Dynamik des Kosmos, je nachdem ob er positiv, negativ oder null ist. Ein negativer Wert von Λ macht
sich als kosmische Anziehung (Attraktion) bemerkbar und lässt das Universum in sich zusammenfallen
('Anti-de-Sitter'). Dieses negative Λ wirkt also in Richtung der Gravitation.
Ein positiver Wert von Λ wird Dunkle Energie genannt. Er wirkt in der Form einer
Antigravitation, was man auch als kosmische Abstoßung (Repulsion) bezeichnet.
Bei verschwindendem Λ wird die Dynamik des Kosmos nur durch die darin enthaltene Materie bestimmt. Einstein
führte den Lambda-Term ein, um das damals von ihm aus ästhetischen Gründen favorisierte
statische Universum physikalisch zu erklären. Der amerikanische Astronom
Edwin Hubble fand jedoch 1929, dass die Galaxien einer Fluchtbewegung unterliegen und sich das Universum
ausdehnt. Dieser Hubble-Effekt widerlegte schlagartig das Modell eines statischen
Universums, so dass Einstein sein kosmologisches Lambda verwarf. Er bezeichnete diese Idee als seine 'größte
Eselei'.
Die Sternexplosionen gestatten auch zu beurteilen, ob sich über kosmologisch gesehen sehr lange Zeiten (Mrd. Jahre!)
die unterschiedlichen Energieformen im Universum zeitlich verändern. So haben die Permanenz-Messungen der Dunklen Energie
an SN Ia ergeben, dass Einsteins kosmologische Konstante favorisiert werden muss (Riess et al. 2004). Sie hat einen
w-Parameter von w = -1. Das bestätigen neuere Messungen an einer Gruppe von 24 SN Ia,
die mit dem Weltraumteleskop Hubble beobachtet wurden. Fünf davon zeigt die Abbildung oben: die Wirtsgalaxien vor den
Sternexplosionen (untere Reihe) und nach den Explosionen mit hell aufleuchtenden SN Ia (große Version,
Credit: Pressemitteilung NASA/ESA, STScI, A. G. Riess, November 2006). Die neuen Supernovadaten geben sogar noch strengere
Auflagen für die Dunkle Energie: sie muss schon vor neun Milliarden Jahren konstant gewesen sein. Damit erscheinen die zeitlich
veränderlichen Formen Dunkler Energie nicht bevorzugt. Quintessenzen Aus dieser Hypothese von einer Verbindung zum Quantenvakuum erwächst demnach ein fundamentales Skalenproblem, wenn man von einer kosmologischen Konstante ausgeht. Die Problematik führte auf die Idee, sich von der Konstanz (Zeitunabhängigkeit) zu verabschieden und eine zeitabhängige Dunkle Energie in Erwägung zu ziehen. Diese neue Form Dunkler Energie bekam auch einen neuen Namen: Quintessenz. Eine solche zeitabhängige Dunkle Energie kann besser an die Beobachtungen angepasst werden und löst auch das so genannte Koinzidenzproblem, nämlich dass sie im lokalen Universum gerade von der Größenordnung der gewöhnlichen und Dunklen Materie ist. Mit dieser variablen Dunklen Energie kann auch der w-Parameter andere Werte als -1 annehmen. Typische Quintessenz-Modelle liefern einen Wert von w = -1/3 (siehe Diagramm unten). topologische Defekte Eine weitere Form Dunkler Energie sind die topologischen Defekte mit einem w-Parameter von -2/3. Es handelt sich dabei um 'Fehlstellen', die Relikte einer vorangegangenen, spontanen Symmetriebrechung sind. In den Defekten selbst ist allerdings noch die volle Symmetrie erhalten. Bisher gibt es keinerlei Evidenz seitens astronomischer Beobachtung für topologische Defekte, aber sie können auch nicht als additive Form Dunkler Energie ausgeschlossen werden. Phantom-Energie Die Phantom-Energie (Caldwell et al., 2003) ist eine Erscheinungsform Dunkler Energie mit besonders drastischen Konsequenzen: der w-Parameter ist noch kleiner als bei der Kosmologischen Konstante und unterschreitet daher den Wert von -1. Dann führt die Entwicklung des Universums in den Big Rip, den totalen Zerriss von allem, was sich darin befindet - von der makroskopischen bis zur subatomaren Skala! Wann sich der Big Rip ereignet, hängt vom genauen Zahlenwert des w-Parameters ab. Bei w = -1.2 bleiben noch etwa 50 Milliarden Jahre, demnach etwa das 10fache des jetzigen Alters der Erde... Neuste Analysen zeigen allerdings dass mit der Phantom-Energie eine Produktion ultrahochenergetischer Teilchen einhergeht, die nicht in der kosmischen Strahlung beobachtet wurden (Bean et al. 2005). Chaplygin-Gas Das Chaplygin-Gas (siehe dort für Details) wurde bereits 1904 erfunden und 2001 als möglicher Antrieb der kosmischen Expansion vorgeschlagen (Kamenshchik et al. 2001). Es handelt sich um eine exotische Flüssigkeit mit einer sehr ungewöhnlichen Zustandsgleichung. Dieses Gas ist ein Verwandlungskünstler, weil es als Staub, Dunkle Materie oder Dunkle Energie (z.B. Quintessenz) in Erscheinung treten kann. Damit eignet es sich, um in frühen Entwicklungsepochen des Universums als Staub zu fungieren und in späten als Ersatz der Dunklen Energie. Diese Energieform ist zwar konsistent mit Beobachtungsdaten der experimentellen Kosmologie, aber sie polarisiert die Physikergemeinde aufgrund der mysteriösen Zustandsgleichung. ohne Dunkle Energie Die simpelste Lösung wäre, dass man etwas, was man nicht versteht, einfach verschwinden lässt. Geht's auch ohne Dunkle Energie? Ja, zumindest wird auch diese Variante diskutiert. Die Idee ist, dass die beobachtete, kosmische Expansion nicht etwa durch eine Dunkle Energie getrieben wird, sondern durch Dichteschwankungen in der Materie (Kolb et al. 2005; astro-ph/0506534). Wie weit dieser Vorschlag trägt ist unklar - das Gros der Kosmologen favorisiert allerdings eine Existenz der Dunklen Energie. Inhalt bestimmt Zukunft
Die Abbildung oben zeigt sämtliche Materieformen, deren Existenz im Universum nachgewiesen ist oder aktuell diskutiert
wird. Der w-Parameter eignet sich zur Unterscheidung und Klassifizierung der Materie anhand ihrer Zustandsgleichung. Zusammensetzung des Kosmos Die Kosmologen verwenden gerne dimensionslose Größen, die sie mit dem letzten Buchstaben des griechischen Alphabets Omega bezeichnen und Dichteparameter nennen. Omega ist gerade der Quotient von beobachtetem Materieinhalt zu kritischem Materieinhalt. Beide Größen folgen nun aus der Beobachtung: Die Hubble-Konstante bestimmt die kritische Dichte; die beobachtete Materie bestimmt sich aus der Beobachtung leuchtender Materie, nur indirekt ableitbarer Dunkler Materie und dem Anteil Dunkler Energie. Es ist in der modernen Kosmologie üblich, die einzelnen Anteile für Omega mit einem Index zu versehen, je nachdem um welche Materieform es sich handelt (siehe dazu auch unter dem Eintrag Friedmann-Weltmodelle):
Die Messergebnisse für die Dichteparameter der einzelnen Spezies wurden vor allem durch Beobachtungen der kosmischen Hintergrundstrahlung (Cosmic Microwave Background, CMB) von Ballon-Experimenten (BOOMERANG, MAXIMA) und Infrarot- bzw. Mikrowellensatelliten (COBE, WMAP, künftig PLANCK) gemacht. Die Daten von weit entfernten Supernovae Typ Ia sind unabhängige Messobjekte. Hintergrundstrahlung und SN Ia zusammen ergeben sehr präzise Messresultate und eine sehr genaue Vorstellung von der Zusammensetzung des Universums. Die Beiträge zu 'kosmischen Materieformen' wurden durch aktuelle Messungen des Mikrowellen-Satelliten WMAP korrigiert zu (Stand März 2006, Quelle WMAP Homepage)
Der Anteil der Dunklen Energie dominiert eindeutig! Auch Beobachtungen des so genannten 'Lyman-α-Waldes' - charakteristische Absorptionslinien von Wasserstoff - im Spektrum von Quasaren, die schweren Galaxienhaufen, die als Gravitationslinsen fungieren und die Supernovae vom Typ Ia bestätigen die dominante Rolle der kosmologischen Konstante. Die einzelnen Dichteparameter kann man aufsummieren und laut Friedmannscher Theorie muss diese Summe gleich 1 sein. Das beobachtete Ergebnis liegt nahe 1, so dass der Dichteparameter für die Krümmung (Omega mit Index k) verschwinden muss. Anders gesagt: Wir leben also in einem flachen Universum, das von einer Lambda-CDM Kosmologie bestimmt wird (siehe Kürzel oben rechts). In einem flachen Kosmos gelten auch auf der großen Skala die Sätze der ebenen Geometrie, die Euklidische Geometrie. Streuung zerstreut die Zuversicht? Anfang 2004 kamen jedoch Zweifel an den Anteilen der kosmischen Ingredienzen auf, weil der Sunyaev-Zel'dovich Effekt einen stärkeren Einfluss haben könnte, als bislang angenommen. In diesem Streuprozess werden die CMB-Photonen an heißen Elektronen des Clustergases (dem heißen Umgebungsgas der Galaxienhaufen) gestreut. Diese Compton-Streuung verfälscht dann die Informationen, die die Hintergrundstrahlung ins lokale Universum bis zum irdischen Beobachter trägt. Es ist allerdings nicht anzunehmen, dass die Streuung völlig das Konzept der Dunklen Energie zunichte macht! Die genauen Einflüsse müssen jedoch geprüft werden. Das ist aktuelle kosmologische Forschung. Resümee
Die Natur der Dunklen Energie ist nach wie vor rätselhaft. Erst assoziierten die Kosmologen mit ihr (wie beschrieben)
das Quantenvakuum. Physikalisch gesehen ist das eine brillante Idee, denn das 'fein verteilte, überall anzutreffende
Nichts' würde sich in diesem Szenario erst auf den ganz großen, kosmologischen Distanzen bemerkbar machen und
als dynamisch relevant für den Kosmos entpuppen. Auf der kleinen Skala, z.B. in unserem Sonnensystem, gibt es das
Quantenvakuum natürlich auch, aber die Längenskala ist zu klein, als dass das Quantenvakuum dynamisch relevant
für das Sonnensystem und die Bewegung der Planeten wäre. (Aus dem gleichen Grund darf man bei der Beschreibung
der Planeten mit den Kepler-Gesetzen die Expansion des Universums getrost vernachlässigen!)
Das Quantenvakuum darf wohl als die bislang beste Hypothese für die physikalische Natur der Dunklen Energie gewertet
werden. Leider führt diese qualitativ hervorragende Idee in ein quantitatives Desaster in Form eines Skalenproblems
von 120 Größenordnungen. Dunkle Energie in der Stellarphysik Das Konzept der Dunklen Energie wurde - der Kosmologie entlehnt - im Jahr 2001 auch für einen neuen Typus kompakter Objekte übernommen: Gravasterne. Sie haben im Innern an sich ein Vakuum, das jedoch ein Reservoir von Dunkler Energie birgt. Es handelt sich dabei um ein gravitatives Analog zur Bose-Einstein-Kondensation. Diese ('de Sitter'-) Blase stellt nach außen einen (isotropen) Druck zur Verfügung, der eine dünne Materieschicht stabilisiert. Die Schicht besteht aus ultra-kalter Materie, die als relativistische, ideale Flüssigkeit beschrieben werden kann. Im Gravitationskollaps eines massereichen Vorläufersterns oder eines Sternhaufens, könnte sich diese Materiekonfiguration ausbilden, ohne dass ein Horizont entsteht: Die Entweichgeschwindigkeit bleibt bei Gravasternen unterhalb der Lichtgeschwindigkeit. Sie sind nicht so schwarz wie die Schwarzen Löcher. Ob es Gravasterne und Schwarze Löcher tatsächlich in der Natur gibt, wie es astrophysikalische Modelle vorsehen, muss noch gezeigt werden! Wenn es wirklich Gravasterne geben sollte und unser Universum nach aktuellen Messungen zum größten Teil auch aus Dunkler Energie besteht, so haben wir es grundsätzlich in unserem Universum mit einer Substanz zu tun, die äußerst rätselhaft ist. Diese seltsame Energieform bestimmt demnach im Wesentlichen die Entwicklung des Universums und damit auch unser Schicksal! Jagd auf Dunkle Energie mit eRosita Um dem Geheimnis der Dunklen Energie mit astronomischen Beobachtungen auf die Spur zu kommen, entwickelt das Max-Planck-Institut für extraterrestrische Physik zusammen mit weiteren Partnern aus Wissenschaft und Industrie ein neues Röntgenteleskop. Dieses Teleskop namens eRosita (engl. Akronym für extended Roentgen Survey with an Imaging Telescope Array) ist der Nachfolger der erfolgreichen ROSAT-Mission und wird voraussichtlich 2011 starten. Dieses Instrument kombiniert in idealer Weise Sammelfläche, Gesichtsfeld und Auflösungsvermögen und wird neue Maßstäbe in der Röntgenastronomie setzen. Zur Analyse der Dunklen Energie wird die Röntgenstrahlung von Galaxienhaufen ausgewertet (siehe dazu Urknall, Abschnitt '5. Zeuge'). Fazit
Die moderne, relativistische Kosmologie bietet gute Ansätze und Interpretationen für die Dunkle Energie. Die
astronomischen Beobachtungen werden weiterhin Beschränkungen auferlegen, die uns nach und nach der Lösung dieses
Rätsels näher bringen werden. Es ist nicht untertrieben zu sagen, dass die Dunkle Energie eines der größten
Geheimnisse der Physik ist.
'If the universe is expanding, why can't I find a parking space?' (Woody Allen) Weitere Informationen
Dunkle Materie
Unter dieser Sammelbezeichnung versteht man jede Materieform im Universum, die nur sehr schwach leuchtet, so dass man sie schwierig mit herkömmlichen Methoden der Astronomie beobachten kann. Im engeren Sinne meinen die Astronomen sogar Materie, die gar nicht mit elektromagnetischer Strahlung wechselwirkt und damit eine völlig andere Materieform darstellt, als die, die uns umgibt und aus der wir selbst bestehen. Weshalb denkt man sich sowas aus?
Motiviert ist die Dunkle Materie (engl. dark matter, DM) durch die rätselhaften astronomischen Messdaten in der Dynamik von
Galaxien und Galaxienhaufen. Schon 1932 beobachtete Jan Hendrik Oort Rotationsgeschwindigkeiten von
Sternen in der Milchstraße und spekuliert über die Existenz von
'nebulöser, dunkler Materie' (Oort, J.H., Bulletin of the Astronomical Institues of the Netherlands 6, 249, 1932). Auch Fritz
Zwicky stellte 1933 zusätzliche Beschleunigungen der Bewegung von Galaxien innerhalb von Galaxienhaufen fest (Zwicky, Fritz,
Helv. Phys. Acta 110, 6, 1933). Innerhalb einer Galaxie, z.B. in der Kinematik der rotierenden, galaktischen Scheibe, gab es ebenfalls seltsame
Abweichungen. So bemerkten Astronomen Anfang der 1980er Jahre, dass die Rotationskurven der galaktischen Scheibe in vielen Galaxien ein anomales
Profil zeigen (Bosma, A., AJ 86, 1791, 1981; Rubin et al. ApJ 261, 439, 1982): sie fallen nach außen zu größeren
Radien gar nicht ab, wie man es mit der Newtonschen Gravitation erwarten würde. Die heute favorisierte Lösung
besteht darin, dass neben der sichtbaren, leuchtenden Materie die Existenz einer zusätzlichen Materieform, eben der Dunklen Materie,
gefordert wird. Sie erklärt die erreichten Geschwindigkeiten der Sterne und Gaswolken in der Galaxie (die so genannte
Geschwindigkeitsdispersion). In Galaxienhaufen machen die sichtbaren Sterne nur 1% der gesamten Haufenmasse aus, etwa 90%
liegen in Form der Dunklen Materie vor, der Rest ist intergalaktisches Gas. Die Dunkle Materie könnte
das bekannte Missing-Mass-Problem lösen. Physikalische Natur der Dunklen Materie
Aber die Natur der Dunklen Materie ist Gegenstand aktueller Forschung. Astronomen unterschieden anfangs die baryonische
von der nicht-baryonischen Dunkler Materie. Baryonische Materie ist aus Baryonen, also
im Prinzip Quarks zusammengesetzt. Im Gegensatz zu den Mesonen,
die aus Quark und zugehörigem Antiquark (siehe Antimaterie) bestehen, sind die Baryonen
(bestehend aus drei Quarks) recht stabil und langlebig. Die bekanntesten Baryonen sind das Proton und das Neutron, die man
unter der Bezeichnung Nukleonen subsumiert. Sie konstituieren die Atomkerne der Elemente.
Daneben spielen die Elektronen eine vergleichbar wichtige Rolle. Sie gehören zur Klasse der
Leptonen, weisen keine weitere Substruktur auf und sind punktförmig. Die uns umgebende
Materie wird durch das Standardmodell der Teilchenphysik sehr gut beschrieben. Baryonische Dunkle Materie
Zur baryonischen Dunklen Materie zählt man zum Beispiel Planeten. Schon in
unserem Sonnensystem sind von der Sonne weit entfernte Planeten und
Zwergplaneten schwer zu entdecken, wie die jüngsten Fälle zeigen. Deutlich komplizierter
wird es wenn die Planeten um andere Sterne kreisen. Solche extrasolaren Planeten werden vielfach
übersehen, und Astronomen kennen aktuell etwa 200 Stück. Nicht-baryonische Dunkle Materie Neutrinos & WIMPs Nicht-baryonische Materie ist eher exotischer Natur und Gegenstand der Teilchenphysik. Eigentlich meint der Begriff Dunkle Materie im engeren Sinne nur die nicht-baryonische Form. Die Physiker zählen viele Elementarteilchen zu dieser mysteriösen Materieform, und zwar Teilchen, die sie bereits nachgewiesen haben oder die sie im Rahmen eines theoretischen Modells fordern. Populär sind beispielsweise die Neutrinos, von denen man mittlerweile sicher weiß, dass sie eine endliche Masse haben. Allerdings sind die Neutrinomassen äußerst gering, wie die Superkamiokande-Experimente in Japan gezeigt haben. Neutrinos sind zwar extrem zahlreich im Kosmos, doch tragen sie insgesamt nicht signifikant zur nicht-baryonischen Dunklen Materie bei (vergleiche aktuelle WMAP-Daten). Da sind die großen Brüder der schwach wechselwirkenden Neutrinos schon viel interessanter, nämlich die ebenfalls schwach wechselwirkenden WIMPS (engl. Akronym für Weakly Interacting Massive Particles, also schwach wechselwirkende, massive Teilchen). SUSY-Kandidaten Eine populäre Theorie der Elementarteilchenphysik und der Stringtheorien ist die Supersymmetrie (SUSY). Die SUSY sagt einen ganzen 'Zoo' neuer Teilchen voraus! Sie werden übersichtlich mittels Quantenzahlen (Spin, Ladung etc.) sortiert. Zu den bekannten Teilchen des Standardmodells kommen neue Teilchen, die so genannten supersymmetrischen Partner hinzu. So postulieren die SUSY-Theoretiker beispielsweise das Photino als supersymmetrischen Partner des Photons oder das Neutralino als Partner für das Neutrino. Es gibt viele weitere Superpartner zu bereits verifizierten Teilchen des Standardmodells. Allerdings gibt es bisher für keines dieser SUSY-Teilchen experimentelle Evidenz. Besonders interessant als Kandidat für die nicht-baryonische Dunkle Materie ist ein SUSY-Teilchen, das Neutralino, das bei diversen astronomischen Beobachtungen in Erwägung gezogen wird. Die Hinweise darauf sind jedoch recht schwach. Weitere Kandidaten Das Axion ist ein weiterer Kandidat und wurde aus einer Brechung der Peccei-Quinn-Symmetrie der Lagrangedichte der Quantenchromodynamik als massives Goldstone-Boson abgeleitet. Es weist vermutlich eine sehr geringe Masse von 10-5 eV auf und ist ein CDM-Kandidat, der bislang vergeblich gesucht wurde. kalte und heiße Dunkle Materie Es gibt eine weitere Nomenklatur für Dunkle Materie: Kosmologen unterscheiden heiße Dunkle Materie (engl. Hot Dark Matter, HDM) und kalte Dunkle Materie (engl. Cold Dark Matter, CDM). 'Heiß' bedeutet, dass sich der Kandidat im Zeitalter der Galaxienentstehung mit relativistischen Geschwindigkeiten bewegte, also Geschwindigkeiten, die vergleichbar sind mit der Lichtgeschwindigkeit; 'kalt' bedeutet entsprechend, dass er sich nicht-relativistisch bewegte. Ein Beispiel für die HDM sind die Neutrinos. Eine Welt ohne Dunkle Materie? Es gibt auch alternative Modelle, die ohne Dunkle Materie auskommen. Eine solche Theorie ist MOND (und deren relativistische Erweiterung TeVeS), die jedoch auch eine alternative Gravitationstheorie neben der Einsteinschen Theorie darstellt. MOND ist ein unkonventioneller Ansatz. Die meisten Astrophysiker favorisieren die ART mit Dunkle Materie. 3D-Kartographie der Dunklen Materie
Die Existenz der Dunklen Materie wird durch aktuelle Beobachtungen gefestigt. So hat ein Team internationaler Astronomen unter Beteiligung
des MPEs die dreidimensionale Verteilung der Dunklen Materie in einem Himmelsausschnitt bestimmt (Massey et al. Nature 445, 286, 2007). Galaktischer Gasdiebstahl: Die Großen sind die Bösen
Unser heimischer Galaxienhaufen, die Lokale Gruppe, wird dominiert von der Milchstraße und der Andromedagalaxie M31, weil
sie am meisten auf die Waage bringen. Doch es gibt auch kleine Zwerggalaxien, die die massereichen Galaxien umkreisen wie Bienen den Honig. Drei dieser
kleinen Begleitgalaxien sind Draco, Ursa Minor und Andromeda IX, die allesamt extrem leuchtschwach sind. Erst 2006 wurden neue Zwerggalaxien
dieser Gattung (engl. dwarf spheroidals, dSphs) entdeckt (Belokurov et al. 2006; Zucker et al. 2006). Einige von ihnen sind uns so nah wie die
Magellanschen Wolken (~ 50 kpc), aber bei weitem nicht so hell. Seltsamerweise werden diese 'dunklen Minigalaxien' von Dunkler Materie dominiert. Sie enthalten kaum
normales, leuchtendes Gas. Woher kommt das? Unbekannter Goliath Die dominante Rolle in der Kosmologie spielt die Dunkle Energie. Über zwei Drittel macht ihren Anteil an den kosmischen Energieformen aus. Die uns vertraute, gewöhnliche (baryonische) Materie, bestehend vor allem aus Protonen und Neutronen, ist mit einem Anteil von nur 4% eindeutig schwächer vertreten und eher ein fast irrelevanter Nebeneffekt. Frei nach Astrophysiker Harald Lesch, Universitätssternwarte München: 'Wir sind ein Dreckeffekt!' Lassen wir den kosmischen Staubsauger lieber in der galaktischen Abstellkammer.
© Andreas Müller, August 2007
|
IndexA
AbbremsparameterADAF ADD-Szenario ADM-Formalismus AdS/CFT-Korrespondenz AGB-Stern Äquivalenzprinzip Akkretion Aktiver Galaktischer Kern Alfvén-Geschwindigkeit Alfvén-Zahl Allgemeine Relativitätstheorie Alpha-Zerfall AMR anthropisches Prinzip Antigravitation Antimaterie Apastron Apertursynthese Aphel Apogäum Astronomie Astronomische Einheit asymptotisch flach Auflösungsvermögen Axion AXP B
Balbus-Hawley- InstabilitätBardeen-Beobachter Baryogenese Baryonen baryonische Materie Bekenstein-Hawking- Entropie Beobachter Beta-Zerfall Bezugssystem Bianchi-Identitäten Big Bang Big Bounce Big Crunch Big Rip Big Whimper Birkhoff-Theorem Blandford-Payne- Szenario Blandford-Znajek- Mechanismus Blauverschiebung Blazar BL Lac Objekt Bogenminute Bogensekunde Bosonen Bosonenstern Boyer-Lindquist- Koordinaten Bran Brans-Dicke- Theorie Brauner Zwerg Brill-Wellen Bulk C
Carter-KonstanteCasimir-Effekt Cauchy-Fläche Cepheiden Cerenkov-Strahlung Chandrasekhar-Grenze Chaplygin-Gas Chiralität Christoffel-Symbol CMB CNO-Zyklus Comptonisierung Cosmon C-Prozess D
Deep FieldsDerricks Theorem de-Sitter- Kosmos DGP-Szenario Diffeomorphismus differenzielle Rotation Distanzmodul Dodekaeder-Universum Doppler-Effekt Drei-Kelvin-Strahlung Dunkle Energie Dunkle Materie E
Eddington-Finkelstein- KoordinatenEddington-Leuchtkraft Effektivtemperatur Eichtheorie Einstein-Ring Einstein-Rosen- Brücke Einstein-Tensor Eisenlinie Eklipse Ekliptik Ekpyrotisches Modell Elektromagnetismus Elektronenvolt elektroschwache Theorie Elementarladung Energie Energiebedingungen Energie-Impuls-Tensor Entfernungsmodul eos eos-Parameter Epizykel Ereignishorizont erg Ergosphäre eV Extinktion Extradimension extragalaktisch extrasolar extraterrestrisch Exzentrizität F
FalschfarbenbildFanaroff-Riley- Klassifikation Faraday-Rotation Farbindex Farbladung Farbsupraleitung Feldgleichungen Fermi-Beschleunigung Fermionen Fermionenstern Fernparallelismus Feynman-Diagramm FFO FIDO Flachheitsproblem FLRW-Kosmologie Fluchtgeschwindigkeit Frame-Dragging f(R)-Gravitation Friedmann-Weltmodell G
Galaktischer Schwarz-Loch-KandidatGalaxie Gamma Ray Burst Gamma-Zerfall Geodäte Geometrisierte Einheiten Geometrodynamik Gezeitenkräfte Gezeitenradius Gluonen Grad Granulation Gravastern Gravitation Gravitationskollaps Gravitationskühlung Gravitationslinse Gravitationsradius Gravitations- rotverschiebung Gravitationswellen Gravitomagnetismus Graviton GRBR Große Vereinheitlichte Theorien Gruppe GUT GZK-cutoff H
HadronenHadronen-Ära Hamilton-Jacobi- Formalismus Harvard-Klassifikation Hauptreihe Hawking-Strahlung Hawking-Temperatur Helizität Helligkeit Herbig-Haro- Objekt Hertzsprung-Russell- Diagramm Hierarchieproblem Higgs-Teilchen Hilbert-Raum Hintergrundmetrik Hintergrundstrahlung HLX HMXB Holostern Homogenitätsproblem Horizont Horizontproblem Horn-Universum Hubble-Gesetz Hubble-Klassifikation Hubble-Konstante Hydrodynamik hydrostatisches Gleichgewicht Hyperladung Hypernova Hyperonen I
ICInertialsystem Inflation Inflaton intergalaktisch intermediate-mass black hole interplanetar interstellar Isometrien Isospin Isotop ITER J
JahreszeitenJansky Jeans-Masse Jet K
Kaluza-Klein-TheorieKaup-Grenzmasse Kaonen Kataklysmische Veränderliche Keine-Haare- Theorem Kepler-Gesetze Kerr-de-Sitter- Lösung Kerr-Lösung Kerr-Newman- de-Sitter- Lösung Kerr-Newman- Lösung Kerr-Schild- Koordinaten Killing-Felder Killing-Tensor K-Korrektur Koinzidenzproblem Kollapsar Kompaktes Objekt Kompaktheit Kompaktifizierung Kompaneets-Gleichung konforme Transformation Kongruenz Koordinatensingularität Kopenhagener Deutung Korona Korrespondenzprinzip Kosmische Strahlung Kosmische Strings Kosmographie Kosmologie Kosmologische Konstante Kosmologisches Prinzip kovariante Ableitung Kovarianzprinzip Kreisbeschleuniger Kretschmann-Skalar Krümmungstensor Kruskal-Lösung Kugelsternhaufen L
LaborsystemLadung Lagrange-Punkte Lambda-Universum Lapse-Funktion Laserleitstern Lense-Thirring- Effekt Leptonen Leptonen-Ära Leptoquarks Leuchtkraft Leuchtkraftdistanz Levi-Civita- Zusammenhang Licht Lichtjahr Lichtkurve Lie-Ableitung Linearbeschleuniger LINER Linienelement LIRG LMXB LNRF Lokale Gruppe Loop-Quantengravitation Lorentz-Faktor Lorentzgruppe Lorentzinvarianz Lorentz-Kontraktion Lorentz-Transformation Lundquist-Zahl Luxon M
Machscher KegelMachsches Prinzip Machzahl Magnetar magnetische Rotationsinstabilität Magnetohydrodynamik Magnitude marginal gebundene Bahn marginal stabile Bahn Markariangalaxie Maxwell-Tensor Membran-Paradigma Mesonen Metall Metrik Mikroblazar Mikrolinse Mikroquasar Milchstraße Minkowski-Metrik Missing-Mass- Problem mittelschwere Schwarze Löcher MOND Monopolproblem Morphismus M-Theorie Myonen N
NeutrinoNeutronenreaktionen Neutronenstern Newtonsche Gravitation No-Hair-Theorem Nova Nukleon Nukleosynthese Nullgeodäte O
ÖffnungOlbers-Paradoxon O-Prozess Oppenheimer-Volkoff- Grenze optische Tiefe Orthogonalität P
ParadoxonParalleluniversum Parsec partielle Ableitung Pauli-Prinzip Penrose-Diagramm Penrose-Prozess Pentaquark Periastron Perigäum Perihel periodisch persistent Petrov-Klassifikation PG1159-Sterne Phantom-Energie Photon Photonenorbit Photosphäre Pion Pioneer-Anomalie Planck-Ära Planckscher Strahler Planck-Skala Planet Planetarische Nebel Poincarégruppe Poincaré- Transformation Polytrop Population Post-Newtonsche Approximation Poynting-Fluss pp-Kette p-Prozess Prandtl-Zahl primordiale Schwarze Löcher Prinzip minimaler gravitativer Kopplung Protostern Pseudo-Newtonsche Gravitation Pulsar Pulsierendes Universum Pyknonukleare Reaktionen Q
QPOQuant Quantenchromodynamik Quantenelektrodynamik Quantenfeldtheorie Quantengravitation Quantenkosmologie Quantenschaum Quantensprung Quantentheorie Quantenvakuum Quantenzahlen Quark-Ära Quark-Gluonen- Plasma Quarks Quarkstern Quasar quasi-periodisch Quasi-periodische Oszillationen Quelle Quintessenz R
RadioaktivitätRadiogalaxie Radion Randall-Sundrum- Modelle Randverdunklung Raumzeit Rayleigh-Jeans- Strahlungsformel Ray Tracing Reichweite Reionisation Reissner-Nordstrøm- de-Sitter- Lösung Reissner-Nordstrøm- Lösung Rekombination relativistisch Relativitätsprinzip Relativitätstheorie Renormierung Reverberation Mapping Reynolds-Zahl RGB-Bild Ricci-Tensor Riemann-Tensor Ringsingularität Robertson-Walker- Metrik Robinson-Theorem Roche-Volumen Röntgendoppelstern Roter Riese Roter Zwerg Rotverschiebung Rotverschiebungsfaktor r-Prozess RRAT RR Lyrae-Sterne Ruhesystem S
Schallgeschwindigkeitscheinbare Größe Schleifen- Quantengravitation Schwache Wechselwirkung Schwarzer Körper Schwarzer Zwerg Schwarzes Loch Schwarzschild-de-Sitter- Lösung Schwarzschild-Lösung Schwarzschild-Radius Schwerkraft Seltsamer Stern Seltsamkeit Seyfert-Galaxie Singularität skalares Boson SNR Soft Gamma-Ray Repeater Sonne Spektraltyp Spezialität Spezielle Relativitätstheorie Spin Spin-Netzwerk Spinschaum Spin-Statistik-Theorem Spintessenz s-Prozess Standardkerzen Standardmodell Standardscheibe Starke Wechselwirkung Statisches Universum Staubtorus Stefan-Boltzmann- Gesetz stellare Schwarze Löcher Stern Sternentstehung Strange Star Stringtheorien Subraum Supergravitation supermassereiche Schwarze Löcher Supernova Supernovaremnant Superstringtheorie Supersymmetrie Symbiotische Sterne Symmetrie Symmetriebrechung Symmetriegruppe Synchrotron Synchrotronstrahlung Synchrozyklotron T
TachyonTagbogen Tardyon Teilchen Teilchenbeschleuniger Tensorboson Tensoren Tetraden Tetraquark TeVeS Thermodynamik thermonukleare Fusion Tiefenfeldbeobachtung Tierkreis TNO Topologie topologische Defekte Torsionstensor Trägheit transient Transit Triple-Alpha-Prozess T Tauri Stern Tunneleffekt U
ULIRGULX Unifikation Unitarität Universum Unruh-Effekt Urknall V
VakuumVakuumstern Vektorboson Velapulsar Veränderliche Vereinheitlichung Viele-Welten- Theorie VLA VLBI VLT VLTI Voids VSOP W
Walker-Penrose- TheoremWeakonen Weinberg-Winkel Weiße Löcher Weißer Zwerg Wellenfunktion Weylsches Postulat Weyl-Tensor Wheeler-DeWitt- Gleichung Wiensche Strahlungsformel Wilson-Loop WIMP Wolf-Rayet-Stern w-Parameter Wurmlöcher X
X-BosonenX-Kraft X-ray burster Y
Y-BosonenYerkes- Leuchtkraftklassen YSO Yukawa-Potential Z
ZAMOZeit Zeitdilatation Zodiakallicht Zustandsgleichung Zustandsgröße Zwerge Zwergplanet Zwillingsparadoxon Zyklisches Universum Zyklotron |