Start Web-Artikel Lexikon Vorträge Ausbildung Essays Rhetorik Links Autor Kontakt |
Astro-Lexikon K 2 Kepler-Gesetze
Die Kepler-Gesetze sind benannt nach dem deutschen Astronom Johannes Kepler (1571 - 1630), der die Planetendaten seines dänischen Kollegen und Zeitgenossen Tycho Brahe (1546 - 1601) auswertete. Damals wurde einfache optische Linsenteleskope zur astronomischen Beobachtung verwendet, die dem Prototyp, den der Holländer Hans Lipperhey (1570 - 1619) erfand und den Galileo Galilei (1564 - 1642) weiterentwickelte, sehr ähnlich waren. Diese kleinen Fernrohre dienten vor allem der Mond- und Planetenbeobachtung. Keplers Verdienste
Kepler hatte drei Gesetze der Himmelsmechanik rein empirisch gefunden. Eine theoretische Herleitung
dieser später Kepler-Gesetze genannten Gesetze wurde mit der Newtonschen
Gravitationstheorie möglich. Im Physikstudium sind die Keplerschen Gesetze auch heute noch Pflichtübung
in der klassischen Mechanik.
Himmelsbahnen sind Kegelschnitte In dieser historischen Form wurden die Kepler-Gesetze an den Planeten im Sonnensystem beobachtet und bewiesen. Vom physikalischen Standpunkt haben sie jedoch eine viel allgemeinere Gültigkeit und astronomisch einen weit größeren Anwendungsbereich. Es handelt sich beim Kepler-Problem um die Bewegung einer Masse m in einem gravitativen Zentralpotential, nämlich demjenigen, das von der Zentralmasse M gebildet wird. Eine mathematische Analyse des Problems zeigt, dass alle Bahnen von Himmelskörpern im Sonnensystem Kegelschnitte sind. Das heißt die Bahnformen ergeben sich als Schnittfiguren, wenn man einen Kreiskegel mit einer Ebene schneidet. Diese Figuren sind alle bekannt und heißen Kreis, Ellipse, Parabel und Hyperbel - sie unterscheiden sich in der Exzentrizität. Die Ellipse ist dabei einer der wichtigsten Kegelschnitte, beschreibt sie doch die Planetenbahnen im Sonnensystem. Wie diese Schnittfigur zustande kommt, zeigt die Abbildung rechts. Die Ellipse ist dabei ein Sonderfall, der sich nur ergibt, wenn der halbe Öffnungswinkel des Kegels α und der Winkel der Ebene mit der Kegelachse β die Bedingung oben rechts erfüllen; bei anderen Winkelbedingungen ergeben sich entsprechend Kreis, Parabel und Hyperbel. weit reichende Bedeutung für die Physik Die Kepler-Gesetze bestimmen nicht nur die Dynamik im Sonnensystem, sie lassen sich auf viele andere astronomische Systeme übertragen: Doppelsternsysteme oder sogar auf Sterne, die um ein Schwarzes Loch kreisen. Das dritte Kepler-Gesetz kann als Relation zwischen Umlaufzeit (bzw. Umlauffrequenz) und Zentralmasse formuliert werden. In dieser Form wird es exzessiv in zahlreichen kosmischen Systemen genutzt, um Massen kinematisch zu bestimmen. Ein prominentes und aufregendes Beispiel ist das Zentrum der Milchstraße: aus der Dynamik von Sternen und von Gas folgt eine gigantische, konzentrierte Masse, die dunkel im Galaktischen Zentrum lauert. Die beste Interpretation, die Astronomen für dieses seltsame Gebilde haben, ist, dass sich hier ein supermassereiches Schwarzes Loches von gut drei Millionen Sonnenmassen befindet. Damit die entsprechenden Bahnberechnungen bei Schwarzen Löchern noch ihre Gültigkeit haben, müssen die klassischen Kepler-Gesetze relativistisch verallgemeinert werden. Das ist allerdings möglich. Einschränkungen & Erweiterungen
Es seien noch einige Einschränkungen bzw. Erweiterungen der Kepler-Gesetze angemerkt: die Bewegung eines Objekts um das
andere (Zweikörperproblem) erfolgt um den gemeinsamen Schwerpunkt. Im Falle des Systems Planet -
Sonne liegt dieser aufgrund der enormen Masse der Sonne im Vergleich zu den Planeten nahe bei
der Sonne. Web-Artikel Kerr-de-Sitter-Lösung
Die Kerr-de-Sitter-Lösung ist eine Lösung der Einsteinschen Feldgleichungen der Allgemeinen Relativitätstheorie mit Λ-Term (siehe kosmologische Konstante). Physikalisch motiviert ist diese Raumzeit, wenn man ein rotierendes Schwarzes Loch beschreiben will, das sich in einer Umgebung befindet, die mit dem Λ-Fluidum angefüllt ist. zum Namen Der Name Kerr-de-Sitter-Lösung kommt daher, weil diese Metrik beides beinhaltet: die rotierende Eigenschaft von der Kerr-Lösung und die kosmologische Konstante wie in der de-Sitter-Lösung. Eigenschaften: Masse, Rotation, Λ Die Kerr-de-Sitter-Raumzeit ist eine Drei-Parameter-Lösung, weil Massenparameter M, spezifischer Drehimpuls a = J/Mc und die kosmologische Konstante Λ die Eigenschaften der Metrik eindeutig festlegen. Unterscheidung nach Vorzeichen von Λ
Wie bei der de-Sitter-Raumzeit auch, sprechen Theoretiker von der Kerr-de-Sitter-Lösung (KdS-Metrik), falls Λ > 0 (repulsive kosmologische
Konstante; Antigravitation) und von der Kerr-Anti-de-Sitter-Lösung (KAdS-Metrik), falls Λ < 0 (attraktive
kosmologische Konstante). Im Grenzfall Λ = 0 ist gerade die gewöhnliche Kerr-Metrik mit verschwindender kosmologischer Konstante realisiert. Linienelement Der Vollständigkeit halber sei das Linienelement an dieser Stelle notiert: Weitere Raumzeiten Verschwindet der Drehimpuls des Loches, so ist gerade die Schwarzschild-de-Sitter-Lösung realisiert. Gibt es eine zusätzliche elektrische Ladung in der KdS-Metrik, so heißt die Raumzeit Kerr-Newman-de-Sitter-Lösung Publikationen zum Thema
Kerr-Lösung
Die Kerr-Lösung ist eine Vakuum-Lösung der Einsteinschen Feldgleichungen und beschreibt die Metrik rotierender, nicht geladener Schwarzer Löcher. Allgemeiner gesprochen beschreibt es den gekrümmten Außenraum einer elektrisch neutralen, rotierenden Masse. In guter Näherung können mit der Kerr-Lösung rotierende Massen auf der Basis der Allgemeinen Relativitätstheorie beschrieben werden. Ein Rechenkunststück Der Neuseeländer Roy Patrick Kerr fand diese Lösung 1963 in kartesischen Koordinaten, was als mathematische Meisterleistung gewertet werden muss. Denn einerseits ist es generell schwierig, exakte Lösung der komplizierten Einsteinschen Feldgleichungen zu finden und andererseits hat die Kerr-Lösung in den kartesischen Koordinaten eine recht komplizierte Struktur. Durch Koordinaten, die besser an die Symmetrie der Kerr-Geometrie angepasst sind, wird auch ihre mathematische Formulierung einfacher. Üblicherweise notiert man die Kerr-Geometrie in pseudosphärischen Boyer-Lindquist-Koordinaten. Das Linienelement lautet dann: Alternativ kann es auch in Matrixform aufgeschrieben werden, d.h. der metrische Tensor der Kerr-Metrik in Boyer-Lindquist-Form. Die im Linienelement enthaltenen Funktionen sind unter dem Eintrag Boyer-Lindquist-Koordinaten ausführlich notiert. Rotation erschwert die Sache Prinzipiell kann gesagt werden, dass rotierende Schwarze Löcher deutlich komplexere Raumzeiten sind, als ihr nicht rotierendes Pendant, die Schwarzschild-Lösung. Denn die Raumzeit rotiert. Dies spiegelt sich tensoriell darin wider, dass der metrische Tensor nicht mehr diagonal ist: es gibt in Boyer-Lindquist-Koordinaten einen Kreuzterm, der azimutale und zeitliche Komponente koppelt. In den ebenfalls pseudosphärischen Kerr-Schild-Koordinaten gibt es sogar drei Kreuzterme! Das ist zwar eine zusätzliche Komplexität, aber in numerischen Simulationen von rotierenden Löchern kann die Verwendung von Kerr-Schild-Koordinaten zweckmäßiger sein, weil dann Randbedingungen (in Hydrodynamik und Magnetohydrodynamik) besser umgesetzt werden können. zwei Eigenschaften: Masse und Drehimpuls Kerr-Löcher haben also die physikalischen Eigenschaften Masse M und Drehimpuls J. Das Robinson-Theorem diktiert, dass Raumzeiten mit bestimmten Voraussetzungen notwendigerweise identisch mit der Kerr-Lösung sein müssen. Die Rotation kann durch den so genannten Kerr-Parameter (Rotations- oder Spinparameter) a charakterisiert werden. Diese Zahl ist physikalisch gesprochen ein spezifischer Drehimpuls a = J/Mc. In geometrisierte Einheiten (G = c = 1) variiert a zwischen den Werten -M (maximale retrograde Rotation) und +M (maximale prograde Rotation). Manchmal setzen Theoretiker aus Bequemlichkeit auch M = 1 (bisweilen auch auf meiner Website), so dass a zwischen -1 und 1 variiert. Die Maximalwerte +1 und -1 sind mit Vorsicht zu genießen, denn die Singularität der Kerr-Lösung wird dann nach außen hin sichtbar! Der Relativist Kip Thorne hat 1974 herausgefunden, dass die Rotation einen kritischen Maximalwert hat, nämlich a = 0.998M. Gilt exakt a = 0, so geht die Kerr-Lösung in die statische Schwarzschild-Lösung über. gekrümmte Raumzeit Schwarze Löcher sind Raumzeiten, die sehr starke Krümmungen aufweisen, vor allem wenn man in die Nähe der Krümmungssingularität kommt. Nach außen nimmt die Krümmung allerdings rapide ab und verschwindet sogar im Grenzfall einer unendlich hohen Entfernung zum Loch. Diese Eigenschaft haben sowohl Schwarzschild-Metrik, als auch Kerr-Metrik, und sie heißt asymptotische Flachheit. D.h. für sehr große Abstände vom Schwarzen Loch gehen die Schwarzschild- bzw. Kerr-Metrik in die Minkowski-Metrik über. Eigenschaften der Kerr-Lösung
Schema mit struktureller Information Häufig sind diese genannten Eigenschaften der Kerr-Lösung in Abbildungen wie dieser zusammengefasst: Solche Bilder sind jedoch aus einer Reihe von Gründen mit Vorsicht zu genießen: Der Betrachter kann dazu verleitet werden zu glauben, dass genau so ein Schwarzes Loch aussieht. Ein Schwarzes Loch ist aber ein schwarzes Objekt. Ein Außenbeobachter kann aufgrund der Gravitationsrotverschiebung nie etwas vom Inneren des Loches, z.B. die Singularität, sehen. Ein anderes Problem ist, dass die Abbildung oben nicht auf Invarianten beruht, d.h. sie geht auf die Verwendung eines speziellen Koordinatensystems zurück. In einem anderen sieht es anders aus! Nur geeignete Invarianten der ART, wie die gerade angesprochenen Krümmungsinvarianten, erlauben ein objektives Bild. Die Abbildung oben kann also nur dazu dienen, einen Überblick über die strukturellen Komponenten eines Lochs zu bekommen. Realistischer Eindruck vom Anblick eines Schwarzen Loches Ist man daran interessiert, wie sich der visuelle Eindruck eines Loches für einen entfernten Beobachter gestaltet, so muss man eine Simulationstechnik namens relativistisches Ray Tracing betreiben. Die simulierten Bilder sehen aus, wie das folgende:
Das rotierende Schwarze Loch befindet sich in der Bildmitte. Es tritt nur deshalb in Erscheinung, weil seine Umgebung leuchtet.
Denn um das Schwarze Loch befindet sich eine ebenfalls (hier gegen den Uhrzeigersinn) rotierende
Standardscheibe - eine dünne Materiescheibe, die Strahlung abgibt. Der helle Fleck links vom Loch
ist auf Blauverschiebung der Strahlung der sich nähernden Scheibenseite zurückzuführen. Entsprechend
ist die rechte sich entfernende Seite rotverschoben. Es handelt sich um eine relativistische Verallgemeinerung des Doppler-Effekts. Horizonte Bei maximaler Rotation (a = M) sind beide Horizonte bei einem Gravitationsradius. Bei verschwindender Rotation hingegen (a = 0), was der Schwarzschild-Lösung entspricht, ist der äußere Horizont bei zwei Gravitationsradien oder einem Schwarzschildradius. Der innere Horizont koinzidiert mit der zentralen Schwarzschild-Singularität bei r = 0. innere Kerr-Lösung? Alle Versuche, eine innere Kerr-Lösung zu finden sind bisher gescheitert. Bei der Schwarzschild-Lösung ist dies allerdings möglich (siehe Eintrag Schwarzschild-Lösung). Geodäten
Innerhalb des Horizonts treten raumartige Geodäten (wie bei den
Tachyonen) auf, die die Kausalität verletzen! Da jedoch nichts davon nach außen dringen kann
(geschlossene Geodäten), erfüllt diese Kausalitätsverletzung gewissermaßen die kosmische Zensur: Wie die Singularität
sind sie durch den Ereignishorizont verhüllt. Aspekte zur Stabilität Ein wichtiges Kriterium für Lösungen der Einsteinschen Feldgleichungen ist deren Stabilität. Die Theoretiker untersuchen in einer Stabilitätsanalyse der Metrik, wie sie sich unter kleinen Störungen verhält: Schwingt die gestörte Metrik in die ursprüngliche Lösung zurück? Falls ja, ist die Raumzeit stabil. Die Schwarzschild-Lösung ist der Grundzustand der relativistischen Gravitation (in vielen Details nachzulesen im Buch von S. Chandrasekhar mit dem Titel The Mathematical Theory of Black Holes). Demgegenüber ist die Kerr-Lösung zwar stabil gegen axialsymmetrische Störungen. Man kann aber durch Penrose-Prozesse oder Blandford-Znajek-Mechanismen, die beide in der Ergosphäre stattfinden, die Rotationsenergie theoretisch sogar vollständig extrahieren, so dass aus dem Kerr- ein Schwarzschild-Loch wird. In diesem Sinne ist die Kerr-Metrik weniger stabil. dicker Web-Artikel
Kerr-Newman-de-Sitter-Lösung
Die Kerr-Newman-de-Sitter-Lösung ist eine Lösung der Einstein-Maxwell-Gleichungen, d.h. der Einsteinschen Feldgleichung der Allgemeinen Relativitätstheorie mit Λ-Term (siehe kosmologische Konstante) und mit Maxwell-Tensor auf der rechten Seite der Feldgleichung. Motivation Physikalisch motiviert ist diese Raumzeit, wenn man ein rotierendes, elektrisch geladenes Schwarzes Loch beschreiben will, das sich in einer Umgebung befindet, die mit dem Λ-Fluidum angefüllt ist. Die experimentelle Kosmologie belegt mit unterschiedlichen und unabhängigen Methoden, dass das späte Universum durch eine Form Dunkler Energie beschleunigt expandiert. Aus dem Zoo Dunkler Energien wird aktuell eine konstante Dunkle Energie mit einem w-Parameter von -1 favorisiert: Das ist gerade Einsteins kosmologische Konstante Λ. Um nun die Wechselwirkung eines Schwarzen Loches mit der Dunklen Energie in der Umgebung zu studieren, bietet sich genau eine Lösungsfamilie an, die im ganz allgemeinen Fall die Kerr-Newman-de-Sitter-Lösung darstellt. zum Namen Der Name Kerr-Newman-de-Sitter-Lösung kommt daher, weil diese Metrik beides beinhaltet: die rotierende Eigenschaft und die Ladungseigenschaft von der Kerr-Newman-Lösung und die kosmologische Konstante wie in der de-Sitter-Lösung. Eigenschaften: Masse, Rotation, Ladung, Λ Die Kerr-Newman-de-Sitter-Raumzeit ist eine Vier-Parameter-Lösung, weil Massenparameter M, spezifischer Drehimpuls a = J/Mc, elektrische Ladung Q und die kosmologische Konstante Λ die Eigenschaften der Metrik eindeutig festlegen. Unterscheidung nach Vorzeichen von Λ
Wie bei der de-Sitter-Raumzeit auch, sprechen Theoretiker von der Kerr-Newman-de-Sitter-Lösung (KNdS-Metrik), falls Λ > 0 (repulsive kosmologische
Konstante; Antigravitation) und von der Kerr-Newman-Anti-de-Sitter-Lösung (KNAdS-Metrik), falls Λ < 0 (attraktive
kosmologische Konstante). Im Grenzfall Λ = 0 ist gerade die gewöhnliche Kerr-Newman-Metrik mit verschwindender kosmologischer Konstante realisiert. Linienelement Der Vollständigkeit halber sei das Linienelement an dieser Stelle notiert: Weitere Raumzeiten Verschwindet die elektrische Ladung, so liegt die Kerr-de-Sitter-Lösung vor. Verschwinden Ladung und sogar Drehimpuls dieses Loches, so ist gerade die Schwarzschild-de-Sitter-Lösung realisiert. Diese elektrisch neutralen Lösungen sind in der Astrophysik geeignete Modelle, um die Wechselwirkung von Schwarzem Loch und Dunkler Energie im Rahmen der klassischen Gravitation Einsteins zu studieren. wissenschaftliche Publikation
Kerr-Newman-Lösung
Diese Lösung der Einsteinschen Feldgleichung der Allgemeinen Relativitätstheorie beschreibt eine Form eines Schwarzen Loches, falls die kosmologische Konstante verschwindet. Allgemein gesprochen beschreibt diese Raumzeit rotierende, geladene Punktmassen. Damit verallgemeinert sie rotierende Schwarze Löcher, also die Kerr-Lösung, weil sie zudem eine elektrische Ladung trägt. keine Vakuumlösung! Der Maxwell-Tensor geht in dieser Beschreibung als Energie-Impuls-Tensor ein und modifiziert die Feldgleichungen so, dass sie eine nicht verschwindende rechte Seite erhalten. D.h. die Kerr-Newman-Lösung ist eine Nicht-Vakuumlösung. Die so modifizierten Feldgleichungen heißen Einstein-Maxwell-Gleichungen. keine Verwendung in der Astrophysik Im Rahmen der Relativitätstheorie ist die genaue Untersuchung jeder Raumzeit als Lösung der Einstein-Gleichung interessant. Bezogen auf die Astronomie muss geklärt werden wie realistisch das entsprechende Modell ist. Im vorliegenden Fall der Kerr-Newman-Lösung wäre zu fragen: Macht es Sinn ein kosmisches Schwarzes Loch mit den Eigenschaften Masse, Drehimpuls und elektrische Ladung zu betrachten? Vermutlich hat die Kerr-Newman-Metrik eher einen akademischen Charakter, weil elektrische Ströme in unmittelbarer Umgebung des Loches Ladungsunterschiede kompensieren würden. Theoretisch sind geladenen Löcher in völliger Isolation denkbar. Weil aber immer irgendwelche Materieformen im All anzutreffen sind (Staub, Sterne, interstellares oder intergalaktisches Gas), sind sie eben sehr unwahrscheinlich. Das erklärt, weshalb die Anwendung dieser Kerr-Newman-Lösungen in der Astrophysik nicht besonders verbreitet ist. Die beiden intensiv eingesetzten Raumzeiten für Schwarze Löcher sind die Schwarzschild-Lösung und die Kerr-Lösung, also elektrisch neutrale Löcher. Zur mathematischen Herleitung Durch einen Trick (nach Newman & Janis) kann die Kerr-Newman-Lösung aus der statischen Reissner-Nordstrøm-Lösung gewonnen werden.
© Andreas Müller, August 2007
|
IndexA
AbbremsparameterADAF ADD-Szenario ADM-Formalismus AdS/CFT-Korrespondenz AGB-Stern Äquivalenzprinzip Akkretion Aktiver Galaktischer Kern Alfvén-Geschwindigkeit Alfvén-Zahl Allgemeine Relativitätstheorie Alpha-Zerfall AMR anthropisches Prinzip Antigravitation Antimaterie Apastron Apertursynthese Aphel Apogäum Astronomie Astronomische Einheit asymptotisch flach Auflösungsvermögen Axion AXP B
Balbus-Hawley- InstabilitätBardeen-Beobachter Baryogenese Baryonen baryonische Materie Bekenstein-Hawking- Entropie Beobachter Beta-Zerfall Bezugssystem Bianchi-Identitäten Big Bang Big Bounce Big Crunch Big Rip Big Whimper Birkhoff-Theorem Blandford-Payne- Szenario Blandford-Znajek- Mechanismus Blauverschiebung Blazar BL Lac Objekt Bogenminute Bogensekunde Bosonen Bosonenstern Boyer-Lindquist- Koordinaten Bran Brans-Dicke- Theorie Brauner Zwerg Brill-Wellen Bulk C
Carter-KonstanteCasimir-Effekt Cauchy-Fläche Cepheiden Cerenkov-Strahlung Chandrasekhar-Grenze Chaplygin-Gas Chiralität Christoffel-Symbol CMB CNO-Zyklus Comptonisierung Cosmon C-Prozess D
Deep FieldsDerricks Theorem de-Sitter- Kosmos DGP-Szenario Diffeomorphismus differenzielle Rotation Distanzmodul Dodekaeder-Universum Doppler-Effekt Drei-Kelvin-Strahlung Dunkle Energie Dunkle Materie E
Eddington-Finkelstein- KoordinatenEddington-Leuchtkraft Effektivtemperatur Eichtheorie Einstein-Ring Einstein-Rosen- Brücke Einstein-Tensor Eisenlinie Eklipse Ekliptik Ekpyrotisches Modell Elektromagnetismus Elektronenvolt elektroschwache Theorie Elementarladung Energie Energiebedingungen Energie-Impuls-Tensor Entfernungsmodul eos eos-Parameter Epizykel Ereignishorizont erg Ergosphäre eV Extinktion Extradimension extragalaktisch extrasolar extraterrestrisch Exzentrizität F
FalschfarbenbildFanaroff-Riley- Klassifikation Faraday-Rotation Farbindex Farbladung Farbsupraleitung Feldgleichungen Fermi-Beschleunigung Fermionen Fermionenstern Fernparallelismus Feynman-Diagramm FFO FIDO Flachheitsproblem FLRW-Kosmologie Fluchtgeschwindigkeit Frame-Dragging f(R)-Gravitation Friedmann-Weltmodell G
Galaktischer Schwarz-Loch-KandidatGalaxie Gamma Ray Burst Gamma-Zerfall Geodäte Geometrisierte Einheiten Geometrodynamik Gezeitenkräfte Gezeitenradius Gluonen Grad Granulation Gravastern Gravitation Gravitationskollaps Gravitationskühlung Gravitationslinse Gravitationsradius Gravitations- rotverschiebung Gravitationswellen Gravitomagnetismus Graviton GRBR Große Vereinheitlichte Theorien Gruppe GUT GZK-cutoff H
HadronenHadronen-Ära Hamilton-Jacobi- Formalismus Harvard-Klassifikation Hauptreihe Hawking-Strahlung Hawking-Temperatur Helizität Helligkeit Herbig-Haro- Objekt Hertzsprung-Russell- Diagramm Hierarchieproblem Higgs-Teilchen Hilbert-Raum Hintergrundmetrik Hintergrundstrahlung HLX HMXB Holostern Homogenitätsproblem Horizont Horizontproblem Horn-Universum Hubble-Gesetz Hubble-Klassifikation Hubble-Konstante Hydrodynamik hydrostatisches Gleichgewicht Hyperladung Hypernova Hyperonen I
ICInertialsystem Inflation Inflaton intergalaktisch intermediate-mass black hole interplanetar interstellar Isometrien Isospin Isotop ITER J
JahreszeitenJansky Jeans-Masse Jet K
Kaluza-Klein-TheorieKaup-Grenzmasse Kaonen Kataklysmische Veränderliche Keine-Haare- Theorem Kepler-Gesetze Kerr-de-Sitter- Lösung Kerr-Lösung Kerr-Newman- de-Sitter- Lösung Kerr-Newman- Lösung Kerr-Schild- Koordinaten Killing-Felder Killing-Tensor K-Korrektur Koinzidenzproblem Kollapsar Kompaktes Objekt Kompaktheit Kompaktifizierung Kompaneets-Gleichung konforme Transformation Kongruenz Koordinatensingularität Kopenhagener Deutung Korona Korrespondenzprinzip Kosmische Strahlung Kosmische Strings Kosmographie Kosmologie Kosmologische Konstante Kosmologisches Prinzip kovariante Ableitung Kovarianzprinzip Kreisbeschleuniger Kretschmann-Skalar Krümmungstensor Kruskal-Lösung Kugelsternhaufen L
LaborsystemLadung Lagrange-Punkte Lambda-Universum Lapse-Funktion Laserleitstern Lense-Thirring- Effekt Leptonen Leptonen-Ära Leptoquarks Leuchtkraft Leuchtkraftdistanz Levi-Civita- Zusammenhang Licht Lichtjahr Lichtkurve Lie-Ableitung Linearbeschleuniger LINER Linienelement LIRG LMXB LNRF Lokale Gruppe Loop-Quantengravitation Lorentz-Faktor Lorentzgruppe Lorentzinvarianz Lorentz-Kontraktion Lorentz-Transformation Lundquist-Zahl Luxon M
Machscher KegelMachsches Prinzip Machzahl Magnetar magnetische Rotationsinstabilität Magnetohydrodynamik Magnitude marginal gebundene Bahn marginal stabile Bahn Markariangalaxie Maxwell-Tensor Membran-Paradigma Mesonen Metall Metrik Mikroblazar Mikrolinse Mikroquasar Milchstraße Minkowski-Metrik Missing-Mass- Problem mittelschwere Schwarze Löcher MOND Monopolproblem Morphismus M-Theorie Myonen N
NeutrinoNeutronenreaktionen Neutronenstern Newtonsche Gravitation No-Hair-Theorem Nova Nukleon Nukleosynthese Nullgeodäte O
ÖffnungOlbers-Paradoxon O-Prozess Oppenheimer-Volkoff- Grenze optische Tiefe Orthogonalität P
ParadoxonParalleluniversum Parsec partielle Ableitung Pauli-Prinzip Penrose-Diagramm Penrose-Prozess Pentaquark Periastron Perigäum Perihel periodisch persistent Petrov-Klassifikation PG1159-Sterne Phantom-Energie Photon Photonenorbit Photosphäre Pion Pioneer-Anomalie Planck-Ära Planckscher Strahler Planck-Skala Planet Planetarische Nebel Poincarégruppe Poincaré- Transformation Polytrop Population Post-Newtonsche Approximation Poynting-Fluss pp-Kette p-Prozess Prandtl-Zahl primordiale Schwarze Löcher Prinzip minimaler gravitativer Kopplung Protostern Pseudo-Newtonsche Gravitation Pulsar Pulsierendes Universum Pyknonukleare Reaktionen Q
QPOQuant Quantenchromodynamik Quantenelektrodynamik Quantenfeldtheorie Quantengravitation Quantenkosmologie Quantenschaum Quantensprung Quantentheorie Quantenvakuum Quantenzahlen Quark-Ära Quark-Gluonen- Plasma Quarks Quarkstern Quasar quasi-periodisch Quasi-periodische Oszillationen Quelle Quintessenz R
RadioaktivitätRadiogalaxie Radion Randall-Sundrum- Modelle Randverdunklung Raumzeit Rayleigh-Jeans- Strahlungsformel Ray Tracing Reichweite Reionisation Reissner-Nordstrøm- de-Sitter- Lösung Reissner-Nordstrøm- Lösung Rekombination relativistisch Relativitätsprinzip Relativitätstheorie Renormierung Reverberation Mapping Reynolds-Zahl RGB-Bild Ricci-Tensor Riemann-Tensor Ringsingularität Robertson-Walker- Metrik Robinson-Theorem Roche-Volumen Röntgendoppelstern Roter Riese Roter Zwerg Rotverschiebung Rotverschiebungsfaktor r-Prozess RRAT RR Lyrae-Sterne Ruhesystem S
Schallgeschwindigkeitscheinbare Größe Schleifen- Quantengravitation Schwache Wechselwirkung Schwarzer Körper Schwarzer Zwerg Schwarzes Loch Schwarzschild-de-Sitter- Lösung Schwarzschild-Lösung Schwarzschild-Radius Schwerkraft Seltsamer Stern Seltsamkeit Seyfert-Galaxie Singularität skalares Boson SNR Soft Gamma-Ray Repeater Sonne Spektraltyp Spezialität Spezielle Relativitätstheorie Spin Spin-Netzwerk Spinschaum Spin-Statistik-Theorem Spintessenz s-Prozess Standardkerzen Standardmodell Standardscheibe Starke Wechselwirkung Statisches Universum Staubtorus Stefan-Boltzmann- Gesetz stellare Schwarze Löcher Stern Sternentstehung Strange Star Stringtheorien Subraum Supergravitation supermassereiche Schwarze Löcher Supernova Supernovaremnant Superstringtheorie Supersymmetrie Symbiotische Sterne Symmetrie Symmetriebrechung Symmetriegruppe Synchrotron Synchrotronstrahlung Synchrozyklotron T
TachyonTagbogen Tardyon Teilchen Teilchenbeschleuniger Tensorboson Tensoren Tetraden Tetraquark TeVeS Thermodynamik thermonukleare Fusion Tiefenfeldbeobachtung Tierkreis TNO Topologie topologische Defekte Torsionstensor Trägheit transient Transit Triple-Alpha-Prozess T Tauri Stern Tunneleffekt U
ULIRGULX Unifikation Unitarität Universum Unruh-Effekt Urknall V
VakuumVakuumstern Vektorboson Velapulsar Veränderliche Vereinheitlichung Viele-Welten- Theorie VLA VLBI VLT VLTI Voids VSOP W
Walker-Penrose- TheoremWeakonen Weinberg-Winkel Weiße Löcher Weißer Zwerg Wellenfunktion Weylsches Postulat Weyl-Tensor Wheeler-DeWitt- Gleichung Wiensche Strahlungsformel Wilson-Loop WIMP Wolf-Rayet-Stern w-Parameter Wurmlöcher X
X-BosonenX-Kraft X-ray burster Y
Y-BosonenYerkes- Leuchtkraftklassen YSO Yukawa-Potential Z
ZAMOZeit Zeitdilatation Zodiakallicht Zustandsgleichung Zustandsgröße Zwerge Zwergplanet Zwillingsparadoxon Zyklisches Universum Zyklotron |