Start Web-Artikel Lexikon Vorträge Ausbildung Essays Rhetorik Links Autor Kontakt |
Astro-Lexikon S 6 Spin-Statistik Theorem
Die Fermionen mit halbzahligem Spin sind streng von den Teilchen mit ganzzahligem Spin, den Bosonen, abzugrenzen. Durch das von Wolfgang Pauli 1925 empirisch gefundene und 1940 theoretisch bewiesene Spin-Statistik-Theorem erhalten Fermionen und Bosonen ihre fundamentale, statistische Deutung:
Formulierung des Pauli-Prinzips Daraus resultiert schließlich dass für den Aufbau der Materie (z. B. Periodensystem der Elemente) so wichtige Pauli-Prinzip: In einem System von identischen Fermionen können nie zwei Teilchen in allen Quantenzahlen übereinstimmen. Struktur der Materie Demnach müssen sich beispielsweise zwei Elektronen, die dieselbe Atomschale bevölkern und sich sonst in allen Quantenzahlen gleichen in ihrem Spin unterscheiden: eines hat spin down, das andere spin up! Ist das nicht der Fall, so muss eines der Elektronen den energetisch nächsthöheren Zustand bevölkern. Genau nach diesem Rezept lassen sich die Elektronen in den Atomschalen verteilen, um die leichten bis schweren Atome im Periodensystem der Elemente aufzubauen. Wenn die Materie ein Haus wäre, dann wäre der Spin der Architekt, der sie strukturiert. Spintessenz
Ein hypothetisches Quintessenz-Modell in der Kosmologie, in dem
die Dunkle Energie durch ein komplexwertiges Skalarfeld generiert
wird, das rotiert. Die Rotation nimmt mit der Expansion des Universums ab, so dass auch die Dunkle
Energie zeitabhängig ist und abnimmt. Das Modell stammt von L.A. Boyle, R.R. Caldwell & M. Kamionkowski aus dem
Jahr 2001 (Publikation astro-ph/0105318). s-Prozess
Der s-Prozess ist ein wichtiger Prozess in der nuklearen Astrophysik, der neben der thermonuklearen Fusion zur Erzeugung besonders schwerer Elemente beiträgt. Er findet im Innern von Roten Riesensternen statt, die sich in der AGB-Phase befinden, also den asymptotischen Riesenast im Hertzsprung-Russell-Diagramm der Sterne durchlaufen. Das Innere eines AGB-Sterns In AGB-Sternen werden Helium und Kohlenstoff im Schalenbrennen fusioniert, der Sternkern ist weitgehend inaktiv. Demzufolge ist das hydrostatische Gleichgewicht der AGB-Sterne ziemlich gestört. Die Brennphasen und der Stern als Ganzes sind sehr instabil und deutlich komplizierter als bei anderen Sternphasen. Die Brennprozesse im Innern generieren in jedem Fall ein neutronenreiches Milieu mit typischen Neutronendichten von 108 cm-3, also 100 Millionen Neutronen in einem Kubikzentimeterwürfel. Was passiert im s-Prozess? Schwere Atomkerne im Sternplasma haben einen größeren Wirkungsquerschnitt, d.h. eine größere Wahrscheinlichkeit, die Neutronen einzufangen. Das schwerste Element, das der Stern bis dato gebildet hat, ist Eisen (Fe). Die Eisenkerne stellen demnach die Ausgangsprodukte (Edukte) für den s-Prozess dar. Die Kerne benötigen vergleichsweise viel Zeit, bis sie die Neutronen eingefangen haben. Die typische Zeitskala liegt im Bereich von Jahren. Der s-Prozess verdankt seinen Namen gerade dieser Langsamkeit (engl. slowness), nicht etwa weil die beteiligten Neutronen langsam wären. In den mit Neutronen übersättigten Kernen finden die üblichen kernphysikalischen Umwandlungsreaktionen statt: der β--Zerfall der Neutronen generiert Protonen in den Eisenkernen und erzeugt damit Elemente höherer Ordnungszahl (Zink Zn, Kupfer Cu). Diese wiederum fangen ihrerseits Neutronen ein und werden auch zu schweren Elementen umgewandelt (Gallium Ga, Germanium Ge). Dies funktioniert bis hinauf zu Wismut (Bi-209, Ordnungszahl 83), dem letzten stabilen Nuklid. Limit bei schweren Kernen Alle schwereren Kerne sind besonders instabil und zerfallen schnell. Weil die Halbwertszeiten beteiligter instabiler Nuklide in dieser Kette deutlich kürzer sind als charakteristische Einfangzeiten der Neutronen, bewegt sich der s-Prozess im unteren Bereich nahe am Stabilitätstal auf der Nuklidkarte. Trägt man die Protonenzahl eines Kerns (Ordnungszahl des Elements; Kernladungszahl) über der Neutronenzahl auf, so ergeben sich etwa entlang der Diagonalen (Protonenzahl = Neutronenzahl) die Orte stabiler Elemente, die also nicht radioaktiv zerfallen. Diese Diagonale, die für schwere Kerne nach unten abknickt (schwere Kerne sind neutronenreicher; anschaulich deshalb, um die abstoßenden Coulombkräfte der Protonen durch neutrale Teilchen dazwischen zu kompensieren), heißt Stabilitätstal. Bedeutung des s-Prozesses
Der s-Prozess ist von hoher Relevanz, um die Anreicherung des interstellaren Mediums (ISM) mit
Metallen zu erklären. Damit ist der s-Prozess mit verantwortlich für die schweren Elemente, die wir heute
im Sternenstaub und auf der Erde finden. Der zweite Mechanismus, der ähnlich, aber auf deutlich kürzeren Zeitskalen (Millisekunden!)
abläuft ist der r-Prozess in Supernovae. Er generiert noch schwerere
Elemente als der s-Prozess. Empfohlene Quelle
Standardkerzen
Dieser etwas flapsige Ausdruck subsumiert sämtliche Quellen am Himmel, deren absolute Helligkeit M Astronomen sehr genau astronomisch direkt messen können oder auf deren absolute Helligkeit man sehr genau indirekt mittels anderer Parameter schließen kann. Was macht man mit M? Mit einer weiteren Messung der relativen Helligkeit m, d.h. derjenigen Helligkeit, die man direkt beobachtet, kann über das Entfernungsmodul m - M = -5 + 5×log(r) die Entfernung r dieser Objekte angeben. Die Entfernung einer Quelle ist ein sehr wichtiger Parameter für die Astronomie, erlaubt sie doch eine dreidimensionale Kartierung des Universums. Ein Blick an den Himmel ist ein Blick in die Vergangenheit Die Lichtgeschwindigkeit ist gemäß der Speziellen Relativitätstheorie eine absolute Obergrenze: keine Information kann schneller zu uns gelangen, als das Licht. Dennoch ist die Geschwindigkeit begrenzt und beträgt im Vakuum etwa 300 000 km/s. Mit anderen Worten: Die Strahlung einer kosmischen Quelle braucht eine gewisse Zeit, bis sie beim irdischen Beobachter ankommt. So benötigt das Licht des Mondes für seine Entfernung zur Erde eine gute Sekunde, von der Sonne aus gut acht Minuten, zum nächsten extrasolaren Stern etwa vier Jahre und am weitesten Objekt, dass das bloße menschliche Auge zu erblicken vermag, der Andromedagalaxie in der Lokalen Gruppe, 2 Millionen Jahre. Dieser Zeitaspekt macht deutlich, dass ein Astronom mit zunehmender Entfernung in die Vergangenheit des Kosmos blickt. Somit betritt er das Terrain der Kosmologie und beschäftigt sich automatisch mit der Entwicklung von Objekten im Universum und mit der des Universums an sich. Damit ist klar, weshalb gute Standardkerzen so wichtig in der Astronomie sind: Sie markieren feste Bezugspunkte im Kosmos und sind Voraussetzung für präzise, kosmologische Modelle. Katalog guter Standardkerzen
Standardmodell
Das Standardmodell der Elementarteilchen (häufige Abkürzung SM) ist der erfolgreiche Versuch, drei der bekannten vier fundamentalen Wechselwirkungen von Materie unter einer einheitlichen Sichtweise zu verstehen. Die elektromagnetische, die schwache und die starke Wechselwirkung sind Gegenstand des Standardmodells. Die vierte Kraft, die Gravitation konnte nicht in das Standardmodell eingebettet werden. Das Graviton ist kein Teilchen des Standardmodells. Bausteine der Materie: Quarks & Leptonen Die wesentlichen Teilchengruppen des Standardmodells sind die Quarks und Leptonen. Die Teilchenphysiker unterscheiden sechs Quarks, die sich durch ihren Flavor unterscheiden: up, down, strange, charm, bottom, top (sowie weitere sechs Antiquarks). Alle konnten experimentell nachgewiesen werden. Die Quarks tragen neben der drittelzahligen elektrischen Elementarladung eine Farbladung (daher das chromos, grch. 'Farbe', im Begriff Quantenchromodynamik). Hinter den Leptonen, die farblos sind, verbergen sich Elektron, Myon, Tauon und deren Antiteilchen sowie die zugehörigen Neutrinos, also Elektron-, Myon-, Tau-Neutrino und entsprechende Antineutrinos. Alle diese Teilchen sind punktförmig in dem Sinne, dass sie keinerlei Substruktur aufweisen. Quarks und Leptonen sind elementar und bestehen nicht aus irgendwelchen anderen Teilchen. Atome, Atomkerne, Nukleonen Atomkerne bestehen aus Nukleonen, den Kernteilchen. Im Speziellen enthalten die Atomkerne unterschiedliche Anzahl von Protonen und Neutronen und bereichern in dieser Vielfalt die Tafel der chemischen Elemente. Nukleonen besitzen eine Substruktur: Sie enthalten unterschiedliche Kombinationen aus drei Quarks. Das Proton besteht aus zwei u-Quarks und einem d-Quark (uud), das Neutron enthält dagegen zwei d-Quarks und ein u-Quark (udd). Elektronen bevölkern die Atomhülle. Nach außen hin sind Atome elektrisch neutral, weil sich die negative Ladung aller Elektronen gerade mit der positiven Ladung aller Protonen im Atomkern aufhebt. Im klassischen Bohrschen Atommodell 'umkreisen' die leichten Elektronen die Atomkerne. Im Orbitalmodell der Quantenchemie sind die Elektronen in Form von elektronischen Wellenfunktionen um den Atomkern 'verschmiert'. Mesonen und Baryonen sind Hadronen
Hadronen ist der Oberbegriff für alle Teilchen, die aus Quarks zusammengesetzt
sind. Dabei unterscheidet man weiterhin die Mesonen und die
Baryonen: Baryonen bestehen aus drei Quarks, während die Mesonen
nur aus zwei Quarks zusammengesetzt sind. Genauer gesagt sind die Konstituenten der Mesonen ein Quark und ein Antiquark,
weshalb sie recht kurzlebig sind. Bekannte Baryonen sind neben dem Proton und dem Neutron die Lambda- und
Omega-Teilchen; bekannte Mesonen sind die drei Pionen, die neutral (Quarkgehalt u und anti-u),
negativ (d, anti-u) und positiv (u, anti-d) geladen sind, die Kaonen sowie das Psi-Teilchen
(eine Realisierung von Charmonium), das aus einem c-Quark und einem anti-c-Quark besteht. Isospin Führt man eine weitere Quantenzahlen ein, wie den Isospin, der ebenso wie der Spin (daher iso, grch. 'gleich') der üblichen Drehimpulsalgebra der Quantenmechanik genügt, so kann man Proton und Neutron als Nukleon unifizieren. Proton und Neutron bilden ein Isospindublett (s = 1/2) und haben lediglich unterschiedlichen Isospinprojektionen bzw. unterscheiden sich in der dritten Komponente des Isospins (1/2 gegenüber -1/2). Diese Idee geht auf den deutschen Quantenphysiker Werner Heisenberg zurück. Die unterschiedlichen Eigenschaften kommen erst zum Tragen, wenn man die elektromagnetische Wechselwirkung 'einschaltet'. Physiker sagen, die elektromagnetische Wechselwirkung bewirke eine Symmetriebrechung, die darin mündet, das eines der Nukleonen eine elektrische Ladung erhält und die Massen beider Nukleonen leicht differieren. Anders gesagt: Ohne Elektromagnetismus sind Proton und Neutron ununterscheidbar. Das mysteriöse Higgs-Boson Das letzte, noch nicht nachgewiesene Teilchen des Standardmodells ist das schwere Higgs-Boson. Der britische Physiker Peter W. Higgs hat es bereits 1964 vorhergesagt. Das Higgs-Teilchen stattet im Higgs-Mechanismus die Teilchen mit Masse aus und ist aufgrund seiner kurzen Lebensdauer außerordentlich schwierig nachzuweisen. Am CERN hat man dafür im November 2000 'schwache Evidenzen' gefunden, kurz bevor der Large Electron Positron Collider (LEP) abgeschaltet werden musste. Die Hoffnungen liegen nun im neuen Beschleuniger am CERN, dem Large Hadron Collider (LHC), der Ende 2007 eingeschaltet wird. Tests des Standardmodells
Das Standardmodell der Teilchenphysik hat sich hervorragend bewährt und gilt als mächtige, etablierte, physikalische Theorie.
Die Vorhersagen der Teilchen des Standardmodells sind außer im Fall des Higgs-Bosons eingetroffen und stützen das Standardmodell.
Für Teilchen- und Hochenergiephysiker ist es Alltaggeschäft mit dem Standardmodell zu rechnen und Experimente in Teilchenbeschleunigern
auf der Grundlage dieser Theorie zu analysieren. Die drei Kräfte als mathematische Gruppe Gruppentheoretisch beschreibt man die elektromagnetische Wechselwirkung als Quantenelektrodynamik, QED mit der unitären Gruppe U(1), die schwache Wechselwirkung mit der speziellen, unitären Gruppe SU(2) und die starke Wechselwirkung als Quantenchromodynamik, QCD mit der speziellen, unitären Gruppe SU(3). Das Standardmodell ist gerade das direkte Produkt dieser Gruppen SU(3) × SU(2) × U(1). Die bosonischen Austauschteilchen der Wechselwirkungen (intermediäre Bosonen) sind acht Gluonen bei der starken, neutrales Z- und elektrisch geladene W+- und W--Teilchen bei der schwachen und das masselose und neutrale Photon bei der elektromagnetischen Wechselwirkung. Diese Eichbosonen des Standardmodells folgen direkt aus der Gruppentheorie. Vier Naturkräfte waren einmal eine Studiert man die Kopplungskonstanten der vier Wechselwirkungen, so stellt man fest, dass sie bei großen Abständen wechselwirkender Teilchen (oder äquivalent dazu kleinen Energiebereichen) sehr unterschiedlich sind. Erst auf subatomaren Größenskalen (~ 10-20 cm) nähern sich die Werte der Kopplungskonstanten (die also gar nicht konstant ist!) an und treffen sich schließlich bei etwa 10-29 cm. Dieses Verhalten nennt man dimensionale Transmutation, und es gilt zumindest für die drei Wechselwirkungen außer der Gravitation! Die entsprechende Energieskala von 2 × 1016 GeV wird von den Großen Vereinheitlichten Theorien (engl. Grand Unified Theories, GUT) beschrieben. Bei diesen Energien bzw. Temperaturen oberhalb von 1029 Kelvin sind die elektromagnetische, schwache und starke Kraft ununterscheidbar. Diese neue, universelle Kraft heißt X-Kraft. Hochenergiephysiker und Kosmologen sind davon überzeugt, dass dieses Milieu Sekundenbruchteile nach dem Urknall vorgeherrscht habe. In der Kosmologie nennt man diese Phase die GUT-Ära. Die Gravitation spielt eine Sonderrolle, denn sie ist nicht unter den vereinigten drei Kräften dabei (Hierarchieproblem). So ist man immer noch auf der Suche nach der 'Urkraft' bzw. der Unified Theory (UT). Es stellt sich heraus, dass immer höhere Energien nötig sind, um die Wechselwirkungen zu vereinen. Deshalb benötigen die Hochenergiephysiker immer größere Teilchenbeschleuniger, um die prognostizierten Teilchen herstellen und nachweisen zu können. Ein erster Erfolg bei der Vereinheitlichung von Kräften bzw. Quantenfeldtheorien ist die elektroschwache Wechselwirkung. Hier wird die elektromagnetische mit der schwachen Wechselwirkung vereinigt. Diese Theorie heißt auch GSW-Modell, nach den Pionieren Glashow, Salam und Weinberg. Aus dieser Behandlung konnten die Weakonen, die sehr massereichen W- und das Z-Teilchen (80 bzw. 90 Protonenmassen!) vorhergesagt und erfolgreich nachgewiesen werden. Diese Leistung wurde auch mit dem Nobelpreis honoriert. Supersymmetrie Abseits des Standardmodells wird besonders intensiv die Supersymmetrie (SUSY) untersucht. Diese Symmetrie zwischen Bosonen und Fermionen prognostiziert eine Vielzahl neuer Teilchen: die SUSY-Teilchen. Die Supersymmetrie ist ein gewichtiger Zusatz zum Standardmodell, auf den die moderne Teilchenphysik kaum verzichten kann. Ein Nachweis von SUSY-Teilchen wird deshalb erstrebt, nur haben sie deutlich höhere Massen und können demzufolge erst mit neuen, noch leistungsfähigeren Teilchenbeschleunigern erzeugt werden. Probleme mit der Schwerkraft Ein schwieriges Unterfangen ist die Vereinigung aller vier Naturkräfte. Die Unifikation von Gravitation und den drei übrigen Wechselwirkungen birgt viele formale Hindernisse. Die bisher erfolgreichste Theorie der Gravitation ist die Allgemeine Relativitätstheorie von Albert Einstein. Sie ist eine klassische (d.h. nicht quantisierte) Theorie und beschreibt Gravitation als geometrische Eigenschaft des Raumes (genauer der vierdimensionalen Raumzeit). Als unquantisierte Theorie enthält sie keines der quantenmechanischen Konzepte wie Unschärfe oder Welle-Teilchen-Dualismus. Auch der mathematische Apparat, nämlich die Tensorrechnung ist völlig wesensverschieden vom Quantisierungsapparat der Quantenfeldtheorien. Wie gelingt also nicht nur eine Vereinigung der Teilchen/Wechselwirkungen, sondern auch eine Vereinigung der Theorien? Anwärter auf Quantengravitationen Eine Erfolg versprechende Lösung scheinen die supersymmetrischen Stringtheorien (Superstringtheorien) zu sein. Sie münden zusammen mit der Supergravitation in die M-Theorie, von der man bislang nur einige Eigenschaften kennt. Die scharfen Kritiker der Stringtheorien werfen vor, dass es nicht gelungen ist, mit den Stringtheorien wesentliche, physikalische Parameter vorauszusagen. Auch die Konzepte, die metrische Gravitationstheorien wie die Allgemeine Relativitätstheorie vorgeben (Diffeomorphismusinvarianz), scheinen nicht adäquat berücksichtigt worden zu sein. Die Anhänger der Stringtheorien loben den unifizierenden Charakter der Theorie, die Vorhersage von Gravitonen als quantisierte Austauschteilchen der Gravitation und konsistente Vorhersage einiger Details (z.B. der Bekenstein-Hawking-Entropie), die auch andere Theorien enthalten. Alternativ wird die Loop-Quantengravitation (LQG) entwickelt, die eine Quantengravitation ist und völlig neue, radikale Aspekte von Zeit und Raum aufwirft. Diese Theorie beschreibt allerdings (noch?) nicht die Teilchen des Standardmodells, sondern nur eine quantisierte Gravitation. Die LQG hat bislang noch keinen unifizierenden Charakter. Es kann nicht ausgeschlossen werden, dass sich Stringtheorien und Loop-Quantengravitation als unterschiedliche oder womöglich überlappende Grenzfälle einer umgeordneten Theorie entpuppen könnten. Die wichtigsten Teilchen der Astronomie
hypothetische Teilchenexoten
Neben diesen erwiesenen Botenteilchen der Astronomie gibt es noch zwei hypothetische Teilchen, die sich als äußerst
interessant erweisen könnten. Das Graviton und das Cosmon.
Das Graviton ist ein Tensorboson (Spin 2), das man mit dem Austauschteilchen einer quantisierten
Gravitation identifiziert. Leider wurde dieses Teilchen weder experimentell entdeckt, noch ist die theoretische Ausarbeitung einer
quantisierten Gravitationstheorie in Analogie zu den anderen Quantenfeldtheorien geglückt.
© Andreas Müller, August 2007
|
IndexA
AbbremsparameterADAF ADD-Szenario ADM-Formalismus AdS/CFT-Korrespondenz AGB-Stern Äquivalenzprinzip Akkretion Aktiver Galaktischer Kern Alfvén-Geschwindigkeit Alfvén-Zahl Allgemeine Relativitätstheorie Alpha-Zerfall AMR anthropisches Prinzip Antigravitation Antimaterie Apastron Apertursynthese Aphel Apogäum Astronomie Astronomische Einheit asymptotisch flach Auflösungsvermögen Axion AXP B
Balbus-Hawley- InstabilitätBardeen-Beobachter Baryogenese Baryonen baryonische Materie Bekenstein-Hawking- Entropie Beobachter Beta-Zerfall Bezugssystem Bianchi-Identitäten Big Bang Big Bounce Big Crunch Big Rip Big Whimper Birkhoff-Theorem Blandford-Payne- Szenario Blandford-Znajek- Mechanismus Blauverschiebung Blazar BL Lac Objekt Bogenminute Bogensekunde Bosonen Bosonenstern Boyer-Lindquist- Koordinaten Bran Brans-Dicke- Theorie Brauner Zwerg Brill-Wellen Bulk C
Carter-KonstanteCasimir-Effekt Cauchy-Fläche Cepheiden Cerenkov-Strahlung Chandrasekhar-Grenze Chaplygin-Gas Chiralität Christoffel-Symbol CMB CNO-Zyklus Comptonisierung Cosmon C-Prozess D
Deep FieldsDerricks Theorem de-Sitter- Kosmos DGP-Szenario Diffeomorphismus differenzielle Rotation Distanzmodul Dodekaeder-Universum Doppler-Effekt Drei-Kelvin-Strahlung Dunkle Energie Dunkle Materie E
Eddington-Finkelstein- KoordinatenEddington-Leuchtkraft Effektivtemperatur Eichtheorie Einstein-Ring Einstein-Rosen- Brücke Einstein-Tensor Eisenlinie Eklipse Ekliptik Ekpyrotisches Modell Elektromagnetismus Elektronenvolt elektroschwache Theorie Elementarladung Energie Energiebedingungen Energie-Impuls-Tensor Entfernungsmodul eos eos-Parameter Epizykel Ereignishorizont erg Ergosphäre eV Extinktion Extradimension extragalaktisch extrasolar extraterrestrisch Exzentrizität F
FalschfarbenbildFanaroff-Riley- Klassifikation Faraday-Rotation Farbindex Farbladung Farbsupraleitung Feldgleichungen Fermi-Beschleunigung Fermionen Fermionenstern Fernparallelismus Feynman-Diagramm FFO FIDO Flachheitsproblem FLRW-Kosmologie Fluchtgeschwindigkeit Frame-Dragging f(R)-Gravitation Friedmann-Weltmodell G
Galaktischer Schwarz-Loch-KandidatGalaxie Gamma Ray Burst Gamma-Zerfall Geodäte Geometrisierte Einheiten Geometrodynamik Gezeitenkräfte Gezeitenradius Gluonen Grad Granulation Gravastern Gravitation Gravitationskollaps Gravitationskühlung Gravitationslinse Gravitationsradius Gravitations- rotverschiebung Gravitationswellen Gravitomagnetismus Graviton GRBR Große Vereinheitlichte Theorien Gruppe GUT GZK-cutoff H
HadronenHadronen-Ära Hamilton-Jacobi- Formalismus Harvard-Klassifikation Hauptreihe Hawking-Strahlung Hawking-Temperatur Helizität Helligkeit Herbig-Haro- Objekt Hertzsprung-Russell- Diagramm Hierarchieproblem Higgs-Teilchen Hilbert-Raum Hintergrundmetrik Hintergrundstrahlung HLX HMXB Holostern Homogenitätsproblem Horizont Horizontproblem Horn-Universum Hubble-Gesetz Hubble-Klassifikation Hubble-Konstante Hydrodynamik hydrostatisches Gleichgewicht Hyperladung Hypernova Hyperonen I
ICInertialsystem Inflation Inflaton intergalaktisch intermediate-mass black hole interplanetar interstellar Isometrien Isospin Isotop ITER J
JahreszeitenJansky Jeans-Masse Jet K
Kaluza-Klein-TheorieKaup-Grenzmasse Kaonen Kataklysmische Veränderliche Keine-Haare- Theorem Kepler-Gesetze Kerr-de-Sitter- Lösung Kerr-Lösung Kerr-Newman- de-Sitter- Lösung Kerr-Newman- Lösung Kerr-Schild- Koordinaten Killing-Felder Killing-Tensor K-Korrektur Koinzidenzproblem Kollapsar Kompaktes Objekt Kompaktheit Kompaktifizierung Kompaneets-Gleichung konforme Transformation Kongruenz Koordinatensingularität Kopenhagener Deutung Korona Korrespondenzprinzip Kosmische Strahlung Kosmische Strings Kosmographie Kosmologie Kosmologische Konstante Kosmologisches Prinzip kovariante Ableitung Kovarianzprinzip Kreisbeschleuniger Kretschmann-Skalar Krümmungstensor Kruskal-Lösung Kugelsternhaufen L
LaborsystemLadung Lagrange-Punkte Lambda-Universum Lapse-Funktion Laserleitstern Lense-Thirring- Effekt Leptonen Leptonen-Ära Leptoquarks Leuchtkraft Leuchtkraftdistanz Levi-Civita- Zusammenhang Licht Lichtjahr Lichtkurve Lie-Ableitung Linearbeschleuniger LINER Linienelement LIRG LMXB LNRF Lokale Gruppe Loop-Quantengravitation Lorentz-Faktor Lorentzgruppe Lorentzinvarianz Lorentz-Kontraktion Lorentz-Transformation Lundquist-Zahl Luxon M
Machscher KegelMachsches Prinzip Machzahl Magnetar magnetische Rotationsinstabilität Magnetohydrodynamik Magnitude marginal gebundene Bahn marginal stabile Bahn Markariangalaxie Maxwell-Tensor Membran-Paradigma Mesonen Metall Metrik Mikroblazar Mikrolinse Mikroquasar Milchstraße Minkowski-Metrik Missing-Mass- Problem mittelschwere Schwarze Löcher MOND Monopolproblem Morphismus M-Theorie Myonen N
NeutrinoNeutronenreaktionen Neutronenstern Newtonsche Gravitation No-Hair-Theorem Nova Nukleon Nukleosynthese Nullgeodäte O
ÖffnungOlbers-Paradoxon O-Prozess Oppenheimer-Volkoff- Grenze optische Tiefe Orthogonalität P
ParadoxonParalleluniversum Parsec partielle Ableitung Pauli-Prinzip Penrose-Diagramm Penrose-Prozess Pentaquark Periastron Perigäum Perihel periodisch persistent Petrov-Klassifikation PG1159-Sterne Phantom-Energie Photon Photonenorbit Photosphäre Pion Pioneer-Anomalie Planck-Ära Planckscher Strahler Planck-Skala Planet Planetarische Nebel Poincarégruppe Poincaré- Transformation Polytrop Population Post-Newtonsche Approximation Poynting-Fluss pp-Kette p-Prozess Prandtl-Zahl primordiale Schwarze Löcher Prinzip minimaler gravitativer Kopplung Protostern Pseudo-Newtonsche Gravitation Pulsar Pulsierendes Universum Pyknonukleare Reaktionen Q
QPOQuant Quantenchromodynamik Quantenelektrodynamik Quantenfeldtheorie Quantengravitation Quantenkosmologie Quantenschaum Quantensprung Quantentheorie Quantenvakuum Quantenzahlen Quark-Ära Quark-Gluonen- Plasma Quarks Quarkstern Quasar quasi-periodisch Quasi-periodische Oszillationen Quelle Quintessenz R
RadioaktivitätRadiogalaxie Radion Randall-Sundrum- Modelle Randverdunklung Raumzeit Rayleigh-Jeans- Strahlungsformel Ray Tracing Reichweite Reionisation Reissner-Nordstrøm- de-Sitter- Lösung Reissner-Nordstrøm- Lösung Rekombination relativistisch Relativitätsprinzip Relativitätstheorie Renormierung Reverberation Mapping Reynolds-Zahl RGB-Bild Ricci-Tensor Riemann-Tensor Ringsingularität Robertson-Walker- Metrik Robinson-Theorem Roche-Volumen Röntgendoppelstern Roter Riese Roter Zwerg Rotverschiebung Rotverschiebungsfaktor r-Prozess RRAT RR Lyrae-Sterne Ruhesystem S
Schallgeschwindigkeitscheinbare Größe Schleifen- Quantengravitation Schwache Wechselwirkung Schwarzer Körper Schwarzer Zwerg Schwarzes Loch Schwarzschild-de-Sitter- Lösung Schwarzschild-Lösung Schwarzschild-Radius Schwerkraft Seltsamer Stern Seltsamkeit Seyfert-Galaxie Singularität skalares Boson SNR Soft Gamma-Ray Repeater Sonne Spektraltyp Spezialität Spezielle Relativitätstheorie Spin Spin-Netzwerk Spinschaum Spin-Statistik-Theorem Spintessenz s-Prozess Standardkerzen Standardmodell Standardscheibe Starke Wechselwirkung Statisches Universum Staubtorus Stefan-Boltzmann- Gesetz stellare Schwarze Löcher Stern Sternentstehung Strange Star Stringtheorien Subraum Supergravitation supermassereiche Schwarze Löcher Supernova Supernovaremnant Superstringtheorie Supersymmetrie Symbiotische Sterne Symmetrie Symmetriebrechung Symmetriegruppe Synchrotron Synchrotronstrahlung Synchrozyklotron T
TachyonTagbogen Tardyon Teilchen Teilchenbeschleuniger Tensorboson Tensoren Tetraden Tetraquark TeVeS Thermodynamik thermonukleare Fusion Tiefenfeldbeobachtung Tierkreis TNO Topologie topologische Defekte Torsionstensor Trägheit transient Transit Triple-Alpha-Prozess T Tauri Stern Tunneleffekt U
ULIRGULX Unifikation Unitarität Universum Unruh-Effekt Urknall V
VakuumVakuumstern Vektorboson Velapulsar Veränderliche Vereinheitlichung Viele-Welten- Theorie VLA VLBI VLT VLTI Voids VSOP W
Walker-Penrose- TheoremWeakonen Weinberg-Winkel Weiße Löcher Weißer Zwerg Wellenfunktion Weylsches Postulat Weyl-Tensor Wheeler-DeWitt- Gleichung Wiensche Strahlungsformel Wilson-Loop WIMP Wolf-Rayet-Stern w-Parameter Wurmlöcher X
X-BosonenX-Kraft X-ray burster Y
Y-BosonenYerkes- Leuchtkraftklassen YSO Yukawa-Potential Z
ZAMOZeit Zeitdilatation Zodiakallicht Zustandsgleichung Zustandsgröße Zwerge Zwergplanet Zwillingsparadoxon Zyklisches Universum Zyklotron |