Start Web-Artikel Lexikon Vorträge Ausbildung Essays Rhetorik Links Autor Kontakt |
Astro-Lexikon W 2 Wellenfunktion
Die Wellenfunktion, üblicherweise symbolisiert durch den griechischen Buchstaben Ψ, beschreibt in der Quantentheorie ein mikroskopisches Teilchen. Von der klassischen Mechanik zur Quantenmechanik
In der klassischen Mechanik bestimmt man Teilchenbahnen, indem man das Bewegungsproblem, nämlich die
Bewegungsgleichung, löst. Das Resultat ist eine Teilchenbahn, die von bestimmten Einstellparametern
abhängen mag, aber wohl definiert und diskret ist. Eigenschaften der Wellenfunktion Da die Wellenfunktionen quantenmechanische Teilchen beschreiben, müssen sie auch alle Eigenschaften von Teilchen enthalten können. Die Quantenphysiker nennen diese Eigenschaften Quantenzahlen und meinen damit z.B. die Masse des Teilchens, die elektrische Ladung, den Spin und den Isospin. Weiterhin hängt die Wellenfunktion von den Raumkoordinaten und der Zeit ab. Wahrscheinlichkeitswelle Die Wellenfunktion ist eine skalare Verteilungsfunktion bestimmter Amplitude (Wellenamplitude), die im Allgemeinen vom Ort und der Zeit abhängt und außerdem durch die Teilcheneigenschaften parametrisiert ist. Ein quantenmechanisches Problem gilt als gelöst, wenn der charakteristische Verlauf der Wellenfunktion in den Koordinaten bekannt ist. Das klassische Punktteilchen ist nicht mehr an einem bestimmten Punkt in Raum und Zeit lokalisiert, sondern in Form der Wellenfunktion 'verschmiert'. Dabei ist nicht die Wellenfunktion selbst von Bedeutung, sondern ihr Absolutquadrat. Denn die Wellenfunktion kann auch komplexwertig sein. Absolutquadrate sind reellwertig. Anmerkung: Ein Absolutquadrat berechnet man immer dadurch, dass man eine gegebene komplexe Größe mit der zugehörigen komplex konjugierten Größe (symbolisiert mit einem zusätzlichen Stern, siehe Gleichung oben) multipliziert. Diese Verteilung des Absolutquadrats (nicht der Wellenfunktion selbst!) wird als Wahrscheinlichkeitsverteilung interpretiert. Eine höhere Wahrscheinlichkeit das Quant anzutreffen wird dort erwartet, wo das Absolutquadrat größer ist. Welle-Teilchen-Dualismus In der Quantenphysik können sich Teilchen als Welle oder als Teilchen verhalten, d.h. in dem einen Experiment eignen sich die Welleneigenschaften zur Klärung der Beobachtung; in einem anderen eignen sich die Teilchen- oder Korpuskulareigenschaften. Dieses Phänomen heißt Welle-Teilchen-Dualismus und ist charakteristisch für Quanten. Dieser Dualismus gilt somit beispielsweise für Licht, genauer gesagt für Photonen, aber auch für Elektronen, für das Neutrino oder für den Atomkern. Mikrowelt ist prinzipiell verschwommen Hinzu kommt eine weitere Komplikation in der Quantenwelt: Es ist für quantenmechanische Beobachter nicht möglich, gewisse Eigenschaften eine Quants gleichzeitig zu messen: Ein Quantenbeobachter kann entweder den Ort oder den Impuls (die Geschwindigkeit) eines Quants messen. Ein Quantenbeobachter kann aber auch nur entweder die Energie oder die Zeit messen. Diese Unschärfen werden in der Heisenbergschen Unschärferelation zusammengefasst. Zum quantenmechanischen Messprozess Was mit der Wellenfunktion beim quantenmechanischen Messprozess geschieht, wird im Eintrag Kopenhagener Deutung erläutert. Die Interpretation birgt grundlegende Konsequenzen für unser Weltverständnis. Weylsches Postulat
Dieses Postulat wurde 1923 von H. Weyl entworfen und besagt, dass sich die Galaxien im Universum wie 'Elementarteilchen' in einer Flüssigkeit bewegen sollen. Ein den Raum durchdringendes Substrat kann in diesem Sinne als eine ideale Flüssigkeit angesehen werden, weil sich die Geodäten nur einem singulären Punkt in der Vergangenheit (und evt. auch Zukunft) schneiden. Die Materie (Galaxien) besitzt daher in jedem Punkt der Raumzeit eine eindeutige Geschwindigkeit. Weyl-Tensor
Der Weyl-Tensor oder auch konforme Tensor genannt wurde benannt nach dem deutschen Mathematiker Hermann Klaus Hugo Weyl (1885 - 1955). Dieser Tensor 4. Stufe ist relativ kompliziert und kann zunächst für beliebige Dimensionen n allgemein notiert werden. In der Allgemeinen Relativitätstheorie (ART) gilt n = 4, weil Raumzeiten durch eine Zeitdimension und drei Raumdimensionen charakterisiert sind. Berechnung des Weyl-Tensors
Anhand der Definitionsgleichung oben sieht man unmittelbar, dass der Weyl-Tensor ein recht kompliziertes Gebilde ist, das schon
bei einfachen Raumzeiten nur mit einigem Aufwand zu berechnen ist. Es sei denn man nutzt so genannte computer-algebraische Systeme,
die Tensorrechnungen am Computer bequem und schnell erlauben. Symmetrien Neben den Symmetrien des Riemann-Tensors besitzt der Weyl-Tensor eine zusätzliche Symmetrie: er ist spurfrei, das heißt die Summe seiner Diagonalelemente verschwindet. Die Diskussion seiner Symmetrieeigenschaften lässt eine Klassifikation der Vakuum-Raumzeiten zu, die unter der Petrov-Klassifikation bekannt ist. Indikator der Krümmungseigenschaften Physikalisch ist der Weyl-Tensor besonders von Bedeutung, weil er sich zur Untersuchung der Krümmungseigenschaften von Raumzeiten eignet. Aus Riemann-Tensor und Weyl-Tensor lassen sich Riemannsche und Weylsche Invarianten bestimmen, die nicht vom Koordinatensystem abhängen. Dazu gehört auch der Kretschmann-Skalar. Eine Diskussion solcher Größen macht klar, wo die Krümmung besonders stark oder besonders schwach ist. Das erleichtert das Auffinden von Krümmungssingularitäten und die Charakterisierung als asymptotisch flache Raumzeit. Wheeler-DeWitt-Gleichung
Die zeitabhängige Schrödinger-Gleichung der Quantentheorie beschreibt eindeutig die Dynamik der Wellenfunktion, also deren zeitliche Entwicklung. Lösungen der Schrödinger-Gleichung verraten also den Zustand des Quantensystems zu einem Zeitpunkt t und an einem Ort r (Vektor). von Schrödinger zu Wheeler-DeWitt
Eine relativistische Formulierung der stationären Schrödinger-Gleichung
kennt man als die Wheeler-DeWitt-Gleichung. Sie ist Gegenstand der Quantenkosmologie. Man
erhält diese Gleichung, wenn man die Relativitätstheorie in Hamiltonsche Form umschreibt.
Dieser Zugang ist bereits in der klassischen Mechanik bekannt, besitzt jedoch eine so allgemeine Formulierung, dass man ihn auch auf
andere Theorien übertragen kann. Wichtig ist die Anmerkung, dass die Wheeler-DeWitt-Gleichung nicht
kovariant ist. Das verwundert an sich nicht, wenn man berücksichtigt, dass die Schrödinger-Gleichung
im Rahmen der nicht-relativistischen Quantenmechanik abgeleitet wird. Die Verletzung der Kovarianz
manifestiert sich darin, dass bestimmte raumartige Hyperflächen ausgezeichnet sind. Außerdem gilt die Wheeler-DeWitt-Gleichung nur
punktweise. Deshalb sind etwaige Renormierungsverfahren erforderlich. So geht's weiter: Randbedingungen fixieren
An diese hyperbolische, partielle Differentialgleichung muss man nun Randbedingungen stellen, wie beispielsweise Vilenkin und
Linde vorschlugen. Sie leiteten eine Analogie zum quantenmechanischen Tunneleffekt ab, das
man 'Quantentunneln aus dem (bzw. in das) Nichts' nannte. Dies erklärte sich daraus, weil ein Wahrscheinlichkeitsstrom
(mit der üblichen quantenmechanischen Definition) aus dem (bzw. in den) Superraum hinaus fließt. Erzeugung und Vernichtung ganzer Universen! In der Quantenkosmologie gibt es auch den vertrauten Apparat der kanonischen Quantisierung. So kann man Vielteilchenzustände, Baby-Universen genannt, aus Vakuumzuständen, voids genannt, durch Anwendung von Erzeugungsoperatoren erzeugen. Allerdings wird die zugehörige Wheeler-DeWitt-Gleichung noch komplexer und sogar nicht-linear, weil Wechselwirkungen zwischen diesen Zuständen berücksichtigt werden müssen. Die quantenmechanische Teilchenerzeugung und -vernichtung entspricht in dieser Anwendung auf den Kosmos der Erzeugung und Vernichtung von Universen! Der erkenntnistheoretische Inhalt dieser Theorie ist immens. Der zeitliche Aspekt Die Wheeler-DeWitt-Gleichung ist in ihrer fundamentalen Formulierung unabhängig vom Parameter Zeit! Es gibt zwar einen Zeitparameter, der die Foliation der Raumzeit in Hyperflächen bestimmt. Die Foliation ist jedoch vollkommen willkürlich! Daher ist auch der resultierende Zeitbegriff nicht eindeutig. Es muss nun untersucht werden, ob die Quantentheorien verschiedener Foliationen ('Eichungen') unitär äquivalent sind. Träfe dies zu, wäre die gewählte Foliation irrelevant. Erst spezielle Lösungen der Wheeler-DeWitt-Gleichung (wenn man den lokalen Beobachter wieder einführen muss) leiten wieder auf einen Ordnungsparameter, den man mit der Zeit identifizieren kann. Dies führte in der Vergangenheit zu der Frage nach einer 'Physik ohne Zeit'. Lesehinweis
Wiensche Strahlungsformel
Siehe im Zusammenhang unter Planckscher Strahler.
© Andreas Müller, August 2007
|
IndexA
AbbremsparameterADAF ADD-Szenario ADM-Formalismus AdS/CFT-Korrespondenz AGB-Stern Äquivalenzprinzip Akkretion Aktiver Galaktischer Kern Alfvén-Geschwindigkeit Alfvén-Zahl Allgemeine Relativitätstheorie Alpha-Zerfall AMR anthropisches Prinzip Antigravitation Antimaterie Apastron Apertursynthese Aphel Apogäum Astronomie Astronomische Einheit asymptotisch flach Auflösungsvermögen Axion AXP B
Balbus-Hawley- InstabilitätBardeen-Beobachter Baryogenese Baryonen baryonische Materie Bekenstein-Hawking- Entropie Beobachter Beta-Zerfall Bezugssystem Bianchi-Identitäten Big Bang Big Bounce Big Crunch Big Rip Big Whimper Birkhoff-Theorem Blandford-Payne- Szenario Blandford-Znajek- Mechanismus Blauverschiebung Blazar BL Lac Objekt Bogenminute Bogensekunde Bosonen Bosonenstern Boyer-Lindquist- Koordinaten Bran Brans-Dicke- Theorie Brauner Zwerg Brill-Wellen Bulk C
Carter-KonstanteCasimir-Effekt Cauchy-Fläche Cepheiden Cerenkov-Strahlung Chandrasekhar-Grenze Chaplygin-Gas Chiralität Christoffel-Symbol CMB CNO-Zyklus Comptonisierung Cosmon C-Prozess D
Deep FieldsDerricks Theorem de-Sitter- Kosmos DGP-Szenario Diffeomorphismus differenzielle Rotation Distanzmodul Dodekaeder-Universum Doppler-Effekt Drei-Kelvin-Strahlung Dunkle Energie Dunkle Materie E
Eddington-Finkelstein- KoordinatenEddington-Leuchtkraft Effektivtemperatur Eichtheorie Einstein-Ring Einstein-Rosen- Brücke Einstein-Tensor Eisenlinie Eklipse Ekliptik Ekpyrotisches Modell Elektromagnetismus Elektronenvolt elektroschwache Theorie Elementarladung Energie Energiebedingungen Energie-Impuls-Tensor Entfernungsmodul eos eos-Parameter Epizykel Ereignishorizont erg Ergosphäre eV Extinktion Extradimension extragalaktisch extrasolar extraterrestrisch Exzentrizität F
FalschfarbenbildFanaroff-Riley- Klassifikation Faraday-Rotation Farbindex Farbladung Farbsupraleitung Feldgleichungen Fermi-Beschleunigung Fermionen Fermionenstern Fernparallelismus Feynman-Diagramm FFO FIDO Flachheitsproblem FLRW-Kosmologie Fluchtgeschwindigkeit Frame-Dragging f(R)-Gravitation Friedmann-Weltmodell G
Galaktischer Schwarz-Loch-KandidatGalaxie Gamma Ray Burst Gamma-Zerfall Geodäte Geometrisierte Einheiten Geometrodynamik Gezeitenkräfte Gezeitenradius Gluonen Grad Granulation Gravastern Gravitation Gravitationskollaps Gravitationskühlung Gravitationslinse Gravitationsradius Gravitations- rotverschiebung Gravitationswellen Gravitomagnetismus Graviton GRBR Große Vereinheitlichte Theorien Gruppe GUT GZK-cutoff H
HadronenHadronen-Ära Hamilton-Jacobi- Formalismus Harvard-Klassifikation Hauptreihe Hawking-Strahlung Hawking-Temperatur Helizität Helligkeit Herbig-Haro- Objekt Hertzsprung-Russell- Diagramm Hierarchieproblem Higgs-Teilchen Hilbert-Raum Hintergrundmetrik Hintergrundstrahlung HLX HMXB Holostern Homogenitätsproblem Horizont Horizontproblem Horn-Universum Hubble-Gesetz Hubble-Klassifikation Hubble-Konstante Hydrodynamik hydrostatisches Gleichgewicht Hyperladung Hypernova Hyperonen I
ICInertialsystem Inflation Inflaton intergalaktisch intermediate-mass black hole interplanetar interstellar Isometrien Isospin Isotop ITER J
JahreszeitenJansky Jeans-Masse Jet K
Kaluza-Klein-TheorieKaup-Grenzmasse Kaonen Kataklysmische Veränderliche Keine-Haare- Theorem Kepler-Gesetze Kerr-de-Sitter- Lösung Kerr-Lösung Kerr-Newman- de-Sitter- Lösung Kerr-Newman- Lösung Kerr-Schild- Koordinaten Killing-Felder Killing-Tensor K-Korrektur Koinzidenzproblem Kollapsar Kompaktes Objekt Kompaktheit Kompaktifizierung Kompaneets-Gleichung konforme Transformation Kongruenz Koordinatensingularität Kopenhagener Deutung Korona Korrespondenzprinzip Kosmische Strahlung Kosmische Strings Kosmographie Kosmologie Kosmologische Konstante Kosmologisches Prinzip kovariante Ableitung Kovarianzprinzip Kreisbeschleuniger Kretschmann-Skalar Krümmungstensor Kruskal-Lösung Kugelsternhaufen L
LaborsystemLadung Lagrange-Punkte Lambda-Universum Lapse-Funktion Laserleitstern Lense-Thirring- Effekt Leptonen Leptonen-Ära Leptoquarks Leuchtkraft Leuchtkraftdistanz Levi-Civita- Zusammenhang Licht Lichtjahr Lichtkurve Lie-Ableitung Linearbeschleuniger LINER Linienelement LIRG LMXB LNRF Lokale Gruppe Loop-Quantengravitation Lorentz-Faktor Lorentzgruppe Lorentzinvarianz Lorentz-Kontraktion Lorentz-Transformation Lundquist-Zahl Luxon M
Machscher KegelMachsches Prinzip Machzahl Magnetar magnetische Rotationsinstabilität Magnetohydrodynamik Magnitude marginal gebundene Bahn marginal stabile Bahn Markariangalaxie Maxwell-Tensor Membran-Paradigma Mesonen Metall Metrik Mikroblazar Mikrolinse Mikroquasar Milchstraße Minkowski-Metrik Missing-Mass- Problem mittelschwere Schwarze Löcher MOND Monopolproblem Morphismus M-Theorie Myonen N
NeutrinoNeutronenreaktionen Neutronenstern Newtonsche Gravitation No-Hair-Theorem Nova Nukleon Nukleosynthese Nullgeodäte O
ÖffnungOlbers-Paradoxon O-Prozess Oppenheimer-Volkoff- Grenze optische Tiefe Orthogonalität P
ParadoxonParalleluniversum Parsec partielle Ableitung Pauli-Prinzip Penrose-Diagramm Penrose-Prozess Pentaquark Periastron Perigäum Perihel periodisch persistent Petrov-Klassifikation PG1159-Sterne Phantom-Energie Photon Photonenorbit Photosphäre Pion Pioneer-Anomalie Planck-Ära Planckscher Strahler Planck-Skala Planet Planetarische Nebel Poincarégruppe Poincaré- Transformation Polytrop Population Post-Newtonsche Approximation Poynting-Fluss pp-Kette p-Prozess Prandtl-Zahl primordiale Schwarze Löcher Prinzip minimaler gravitativer Kopplung Protostern Pseudo-Newtonsche Gravitation Pulsar Pulsierendes Universum Pyknonukleare Reaktionen Q
QPOQuant Quantenchromodynamik Quantenelektrodynamik Quantenfeldtheorie Quantengravitation Quantenkosmologie Quantenschaum Quantensprung Quantentheorie Quantenvakuum Quantenzahlen Quark-Ära Quark-Gluonen- Plasma Quarks Quarkstern Quasar quasi-periodisch Quasi-periodische Oszillationen Quelle Quintessenz R
RadioaktivitätRadiogalaxie Radion Randall-Sundrum- Modelle Randverdunklung Raumzeit Rayleigh-Jeans- Strahlungsformel Ray Tracing Reichweite Reionisation Reissner-Nordstrøm- de-Sitter- Lösung Reissner-Nordstrøm- Lösung Rekombination relativistisch Relativitätsprinzip Relativitätstheorie Renormierung Reverberation Mapping Reynolds-Zahl RGB-Bild Ricci-Tensor Riemann-Tensor Ringsingularität Robertson-Walker- Metrik Robinson-Theorem Roche-Volumen Röntgendoppelstern Roter Riese Roter Zwerg Rotverschiebung Rotverschiebungsfaktor r-Prozess RRAT RR Lyrae-Sterne Ruhesystem S
Schallgeschwindigkeitscheinbare Größe Schleifen- Quantengravitation Schwache Wechselwirkung Schwarzer Körper Schwarzer Zwerg Schwarzes Loch Schwarzschild-de-Sitter- Lösung Schwarzschild-Lösung Schwarzschild-Radius Schwerkraft Seltsamer Stern Seltsamkeit Seyfert-Galaxie Singularität skalares Boson SNR Soft Gamma-Ray Repeater Sonne Spektraltyp Spezialität Spezielle Relativitätstheorie Spin Spin-Netzwerk Spinschaum Spin-Statistik-Theorem Spintessenz s-Prozess Standardkerzen Standardmodell Standardscheibe Starke Wechselwirkung Statisches Universum Staubtorus Stefan-Boltzmann- Gesetz stellare Schwarze Löcher Stern Sternentstehung Strange Star Stringtheorien Subraum Supergravitation supermassereiche Schwarze Löcher Supernova Supernovaremnant Superstringtheorie Supersymmetrie Symbiotische Sterne Symmetrie Symmetriebrechung Symmetriegruppe Synchrotron Synchrotronstrahlung Synchrozyklotron T
TachyonTagbogen Tardyon Teilchen Teilchenbeschleuniger Tensorboson Tensoren Tetraden Tetraquark TeVeS Thermodynamik thermonukleare Fusion Tiefenfeldbeobachtung Tierkreis TNO Topologie topologische Defekte Torsionstensor Trägheit transient Transit Triple-Alpha-Prozess T Tauri Stern Tunneleffekt U
ULIRGULX Unifikation Unitarität Universum Unruh-Effekt Urknall V
VakuumVakuumstern Vektorboson Velapulsar Veränderliche Vereinheitlichung Viele-Welten- Theorie VLA VLBI VLT VLTI Voids VSOP W
Walker-Penrose- TheoremWeakonen Weinberg-Winkel Weiße Löcher Weißer Zwerg Wellenfunktion Weylsches Postulat Weyl-Tensor Wheeler-DeWitt- Gleichung Wiensche Strahlungsformel Wilson-Loop WIMP Wolf-Rayet-Stern w-Parameter Wurmlöcher X
X-BosonenX-Kraft X-ray burster Y
Y-BosonenYerkes- Leuchtkraftklassen YSO Yukawa-Potential Z
ZAMOZeit Zeitdilatation Zodiakallicht Zustandsgleichung Zustandsgröße Zwerge Zwergplanet Zwillingsparadoxon Zyklisches Universum Zyklotron |