start


Start
Web-Artikel
Lexikon
Vorträge
Ausbildung
Essays
Rhetorik
Links
Autor
Kontakt

Lexikon - F 2 Lexikon - F 4

Astro-Lexikon F 3


pdf FF
pdf A-ZA-Z

Fernparallelismus

Der Fernparallelismus ist eine Gravitationstheorie, die Albert Einstein 1928 eingeführt hat. Er legt mit dieser Theorie eine vollkommen andere Sicht auf die Schwerkraft vor, als in seiner 1916 publizierten Allgemeinen Relativitätstheorie (ART). Nicht die Krümmung einer Raumzeit ist verantwortlich für die Gravitation, sondern deren Torsion. Im Fernparallelismus verschwindet der Torsions-Tensor nicht - in der ART hingegen schon.

Einsteins Motivation

Einstein zielte mit diesem völlig neuen Ansatz auf eine Unifikation von Gravitation und Elektromagnetismus. Er wählte jedoch dabei eine gänzlich andere Konzeption, als in der etwa zeitgleich entwickelten Kaluza-Klein-Theorie. Randbemerkung: Auch der deutsche Mathematiker Herman Weyl hatte eine solche Vereinheitlichung ab 1918 versucht, jedoch mit einem anderen Ansatz: er führte ein neues Kovektorfeld ein, das er mit dem elektromagnetischen Potential A identifizierte. Dieser Ansatz modifiziert auch den Levi-Civita-Zusammenhang der ART um einen neuen Term zum so genannten Weyl-Zusammenhang in der Weylschen Theorie.

Ursprung der Bezeichnung 'Fernparallelismus'

Fernparallelismus (engl. teleparallelism, distance parallelism) oder fernparallele Gravitation (engl. teleparallel gravity, TP gravity) ist eine Name, den Einstein selbst einführte, um seine neue Theorie zu bezeichnen. Die Schwerkraft steckt nun vollends in der Torsion, und die Raumzeit ist flach, weist also keinerlei Krümmung auf. Einstein konnte zeigen, dass unter diesen Voraussetzungen zwei beliebige Vektoren absolut parallel zueinander sind. Das gab dieser Theorie den Namen.

Grundidee im Fernparallelismus

Die Grundzüge des Fernparallelismus lassen sich am besten in der Gegenüberstellung zu Einsteins ART begreifen: In der ART ist ein Tensorfeld, der metrische Tensor, die zentrale Grundgröße, der durch ein Linienelement charakterisiert wird. Diese Metrik ist im Allgemeinen bestimmt durch 10 unabhängige Komponenten. Im metrischen Tensor steckt die gesamte Struktur und Dynamik der Raumzeit. Durch Berechnung der Christoffel-Symbole und des Riemannschen Krümmungstensors kommt man zu den Feldgleichungen in Einsteins ART.
Die zentrale Grundgröße im Fernparallelismus ist hingegen ein Tetradenfeld, das sich im Allgemeinen aus 16 unabhängigen Komponenten zusammensetzt. Die Torsion übernimmt die Rolle einer Gravitationskraft.

zwei Formulierungen der Gravitation

Trotz dieser Unterschiede im Ansatz kann gezeigt werden, dass ART und Fernparallelismus im Grunde äquivalente Formulierungen der Einsteinschen Gravitation sind - sozusagen zwei Seiten derselben Medaille (Gronwald & Hehl 1996, ePrint unter gr-qc/9602013). Der Energie-Impuls-Tensor ist in der ART die Quelle der Krümmung und in der fernparallelen Gravitation die Quelle für Torsion.
Dementsprechend ist es möglich Analoga zur Schwarzschild-Lösung, Kerr-Lösung und FLRW-Lösung der ART in der Theorie des Fernparallelismus zu finden (Pereira, Vergas & Zhang, CQG 2001; Nashed Gamal 2002; Sharif & Amir, Gen. Rel. Grav. 2006).

Zusammenhang

Dadurch dass nun die Torsion endlich ist, wird der Levi-Civita-Zusammenhang ersetzt durch den Weitzenböck-Zusammenhang. Dieser neue Zusammenhang im Fernparallelismus setzt sich zusammen aus dem gewohnten Levi-Civita-Zusammenhang der ART und dem Verdrehungstensor (engl. contortion tensor; nicht zu verwechseln mit der Spannungs- oder Verzerrungstensor in der Kontinuums- und Elastomechanik).

Aktuelle Entwicklungen

Der Fernparallelismus kann als Feldtheorie mit einem Wirkungsfunktional assoziiert werden. Mittlerweile ist bekannt, dass nur ein spezielles Wirkungsfunktional den Fernparallelismus in die ART überführen lässt. Gravitationstheoretiker erforschen derzeit viele Varianten des Fernparallelismus, die nicht in Einsteins Theorie überführt werden können. Sie hoffen dadurch neue Einsichten in die Natur der Gravitation zu bekommen.

Feynman-Diagramm

Die Feynman-Diagramme oder Feynman-Graphen sind von enormer Relevanz in der Teilchenphysik und Quantenfeldtheorie. Der theoretische Physiker, Nobelpreisträger und geniale Kommunikator Richard P. Feynman (1918 - 1988) erfand sie im Rahmen der Entwicklung der Quantenelektrodynamik. Sie illustrieren Teilchenwechselwirkungen und sind daher ein einfaches Modell, um sich die Kräfte zwischen Teilchen zu veranschaulichen. Feynman-Diagramme stellen gewissermaßen Weg-Zeit-Diagramme dar: die Zeitachse zeigt senkrecht nach oben, die Raumachse waagerecht nach rechts. Weil diese Achsen Konvention sind, werden sie fast ausschließlich weggelassen.

So liest man ein Feynman-Diagramm

Die Teilchen werden als Linien dargestellt, die sich an Wechselwirkungspunkten (Vertices, Einzahl: Vertex) schneiden. Die Wechselwirkung findet dann an einem ausgezeichneten Raum-Zeit- oder Weltpunkt statt. Man hat zur Darstellung der Teilchen folgende Vereinbarungen getroffen:

Rätselhafte Hieroglyphen am Feynman-Graphen

Diese Konventionen werden nicht immer so rigide eingehalten. In der Regel stehen die Teilchensorten immer an den Linien. Jedes Teilchen hat ein internationales Symbol: γ für das Photon; g für die Gluonen; W+, W- und Z für eines der Weakonen, e- für das Elektron; e+ für das Positron, ν für die Neutrinos (meist mit Index für eine der drei Leptonenfamilien); l für ein Lepton; q für ein Quark; p für ein Proton; n für ein Neutron; K für ein Kaon; π für ein Pion; χ für das Neutralino uvm.

Vertices & Wirkungsquerschnitte

Die Feynman-Graphen bestehen aus Grundelementen, die zu verschiedenen Wechselwirkungsszenarien zusammengesetzt werden können. So existieren Fermion-Boson- und Boson-Boson-Vertex. Mindestens zwei dieser Vertizes konstituieren zu einem Wechselwirkungsereignis. Der Austausch eines virtuellen Bosons, wie den Eichbosonen irgendeiner der vier Wechselwirkungen, wird durch den Propagator dargestellt. Die Teilchenphysiker sind immer an Wahrscheinlichkeitsamplituden interessiert, deren Quadrate den Wirkungsquerschnitt bilden. Letzterer steht für die Wahrscheinlichkeit des gesamten Wechselwirkungsprozesses. Die Amplituden sind proportional zur Kopplung und zum Propagator, der durch eine Greensche Funktion dargestellt werden kann. Dieser Formalismus führt schnell auf die bekannten Streuformeln für Rutherford-Streuung und Mott-Streuung.

Endlich mal ein Beispiel

Feynman-Diagramm des Beta-Minus-Zerfalls Die Abbildung rechts zeigt das Feynman-Diagramm des β--Zerfalls auf der Quark-Ebene: Durch den Austausch eines negativen W-Bosons wandelt sich ein d-Quark im Neutron zu einem u-Quark um. Das ändert den Quarkgehalt dieses Baryons und führt dazu, dass das Neutron (udd) im Atomkern zu einem Proton wird (uud). Da bestimmte Quantenzahlen, wie z.B. elektrische Ladung, Leptonenzahl sowie Energie und Impuls, bei diesem Vorgang erhalten sein müssen, bilden sich im Beta-Zerfall auch neue Teilchen: ein Elektron (β-Strahlen) und ein Anti-Elektron-Neutrino. Auf diese Art und Weise lassen sich sämtliche Teilchenreaktionen darstellen.

Strahlungskorrekturen

Es stellt sich heraus, dass es auch Feynman-Diagramme höherer Ordnung gibt. Diese weisen so genannte Strahlungskorrekturen auf, die man wie folgt klassifiziert:

  • photonische Strahlungskorrekturen z.B. Bremsstrahlung,
  • nicht-photonische Strahlungskorrekturen mit Vertex- oder Propagator-Korrekturen (Schleifen oder loops), die von virtuellen Teilchen- und Teilchenpaaren herrühren,
  • und schließlich QCD-Strahlungskorrekturen, bei denen Vertexkorrekturen und Korrekturen durch die Abstrahlung von Gluonen eingehen.

Noch ein komplizierteres Beispiel

Die zweite Abbildung zeigt gerade einen Feynman-Graph höherer Ordnung mit einer Schleife aus einem Elektron-Positron-Paar.
Feynman-Diagramm erster Ordnung mit einer Schleife (nicht-photonische Strahlungskorrektur) Alle Strahlungskorrekturen bewirken, dass der Wirkungsquerschnitt, also die Wahrscheinlichkeit für das Eintreffen der Teilchenwechselwirkung, verändert wird. Die Teilchenphysiker sind gerade an diesen Wirkungsquerschnitten interessiert und berechnen sie für eine Vielzahl verschiedener Feynman-Graphen.

Der eigentliche Clou

Die Feynman-Diagramme sind jedoch weit mehr als eine anschauliche Darstellung von Teilchenprozessen. Die Teilchenphysiker können sie Bausteinen gleich in Fragmente zerlegen, die jeweils eindeutig mit mathematischen Gleichungen verknüpft sind. Auf diese Weise kann man aus vielen Feynman-Diagrammen niedrigster bis höherer Ordnung Gleichungen ableiten, die die Wirkungsquerschnitte liefern. Das ist das eigentlich Geniale an Feynman-Diagrammen!

FFO

Die Abkürzung FFO steht für den free-falling observer, einen frei fallenden Beobachter. Diese Beobachter folgen den zeitartigen Geodäten der im Allgemeinen gekrümmten Raumzeit.

Frei fallen? Klingt gefährlich!

Auf einen frei fallenden Beobachter oder ein frei fallendes Objekt wirken keine äußeren Kräfte. In der Allgemeinen Relativitätstheorie (ART) sagt man: das Objekt bewege sich geodätisch oder kräftefrei. Der einfachste Fall ist die flache Raumzeit der Speziellen Relativitätstheorie, die so genannte Minkowski-Metrik. Ein FFO bewegt sich hier gleichförmig geradlinig, d.h. linear auf einer Geraden. In den gekrümmten Raumzeiten der ART wird das komplizierter: Der FFO bewegt sich dann auf einer 'krummen Bahn', aber kräftefrei.

Werkzeug für Einsteins Theorie

Die Untersuchung von Bewegungen von Objekten im Rahmen der ART erfordert in der Regel die Wahl eines Koordinatensystems und eines Beobachters. Als Beobachter kommen FIDOs und ZAMOs in Frage. Manchmal - zum Beispiel am Ereignishorizont von Schwarzen Löchern - zeigen FIDOs pathologisches Verhalten, d.h. sie erweisen sich als ungeeignet, um die Physik zu beschreiben. Dann wählt man FFOs. Der Übergang auf neue Beobachter wird dabei mit Lorentz-Transformationen vollzogen.

FIDO

Das Kürzel FIDO steht für den fiducial observer, einem Beobachter, dem man trauen kann. Man muss sich vorstellen, dass die Raumzeit mit einer Schar von Beobachtern, den FIDOs, besetzt ist, die an jedem Punkt der Mannigfaltigkeit Experimente durchführen können. Jeder FIDO hat seine eigene Uhr, deren Gangart gegenüber Unendlich durch die Rotverschiebung bestimmt ist.

Flachheitsproblem

Ein Problem in der Kosmologie, das durch die Inflation gelöst wird. Unter dem Eintrag Inflation werden Problem und Auflösung erläutert.

pdf FF
pdf A-ZA-Z

nach oben

Lexikon - F 2 Lexikon - F 4


Start - Web-Artikel - Lexikon - Vorträge - Ausbildung - Essays - Rhetorik - Links - Autor - Kontakt
Andreas Müller © Andreas Müller, August 2007

Index

A
Abbremsparameter
ADAF
ADD-Szenario
ADM-Formalismus
AdS/CFT-Korrespondenz
AGB-Stern
Äquivalenzprinzip
Akkretion
Aktiver Galaktischer Kern
Alfvén-Geschwindigkeit
Alfvén-Zahl
Allgemeine Relativitätstheorie
Alpha-Zerfall
AMR
anthropisches Prinzip
Antigravitation
Antimaterie
Apastron
Apertursynthese
Aphel
Apogäum
Astronomie
Astronomische Einheit
asymptotisch flach
Auflösungsvermögen
Axion
AXP
B
Balbus-Hawley- Instabilität
Bardeen-Beobachter
Baryogenese
Baryonen
baryonische Materie
Bekenstein-Hawking- Entropie
Beobachter
Beta-Zerfall
Bezugssystem
Bianchi-Identitäten
Big Bang
Big Bounce
Big Crunch
Big Rip
Big Whimper
Birkhoff-Theorem
Blandford-Payne- Szenario
Blandford-Znajek- Mechanismus
Blauverschiebung
Blazar
BL Lac Objekt
Bogenminute
Bogensekunde
Bosonen
Bosonenstern
Boyer-Lindquist- Koordinaten
Bran
Brans-Dicke- Theorie
Brauner Zwerg
Brill-Wellen
Bulk
C
Carter-Konstante
Casimir-Effekt
Cauchy-Fläche
Cepheiden
Cerenkov-Strahlung
Chandrasekhar-Grenze
Chaplygin-Gas
Chiralität
Christoffel-Symbol
CMB
CNO-Zyklus
Comptonisierung
Cosmon
C-Prozess
D
Deep Fields
Derricks Theorem
de-Sitter- Kosmos
DGP-Szenario
Diffeomorphismus
differenzielle Rotation
Distanzmodul
Dodekaeder-Universum
Doppler-Effekt
Drei-Kelvin-Strahlung
Dunkle Energie
Dunkle Materie
E
Eddington-Finkelstein- Koordinaten
Eddington-Leuchtkraft
Effektivtemperatur
Eichtheorie
Einstein-Ring
Einstein-Rosen- Brücke
Einstein-Tensor
Eisenlinie
Eklipse
Ekliptik
Ekpyrotisches Modell
Elektromagnetismus
Elektronenvolt
elektroschwache Theorie
Elementarladung
Energie
Energiebedingungen
Energie-Impuls-Tensor
Entfernungsmodul
eos
eos-Parameter
Epizykel
Ereignishorizont
erg
Ergosphäre
eV
Extinktion
Extradimension
extragalaktisch
extrasolar
extraterrestrisch
Exzentrizität
F
Falschfarbenbild
Fanaroff-Riley- Klassifikation
Faraday-Rotation
Farbindex
Farbladung
Farbsupraleitung
Feldgleichungen
Fermi-Beschleunigung
Fermionen
Fermionenstern
Fernparallelismus
Feynman-Diagramm
FFO
FIDO
Flachheitsproblem
FLRW-Kosmologie
Fluchtgeschwindigkeit
Frame-Dragging
f(R)-Gravitation
Friedmann-Weltmodell
G
Galaktischer Schwarz-Loch-Kandidat
Galaxie
Gamma Ray Burst
Gamma-Zerfall
Geodäte
Geometrisierte Einheiten
Geometrodynamik
Gezeitenkräfte
Gezeitenradius
Gluonen
Grad
Granulation
Gravastern
Gravitation
Gravitationskollaps
Gravitationskühlung
Gravitationslinse
Gravitationsradius
Gravitations- rotverschiebung
Gravitationswellen
Gravitomagnetismus
Graviton
GRBR
Große Vereinheitlichte Theorien
Gruppe
GUT
GZK-cutoff
H
Hadronen
Hadronen-Ära
Hamilton-Jacobi- Formalismus
Harvard-Klassifikation
Hauptreihe
Hawking-Strahlung
Hawking-Temperatur
Helizität
Helligkeit
Herbig-Haro- Objekt
Hertzsprung-Russell- Diagramm
Hierarchieproblem
Higgs-Teilchen
Hilbert-Raum
Hintergrundmetrik
Hintergrundstrahlung
HLX
HMXB
Holostern
Homogenitätsproblem
Horizont
Horizontproblem
Horn-Universum
Hubble-Gesetz
Hubble-Klassifikation
Hubble-Konstante
Hydrodynamik
hydrostatisches Gleichgewicht
Hyperladung
Hypernova
Hyperonen
I
IC
Inertialsystem
Inflation
Inflaton
intergalaktisch
intermediate-mass black hole
interplanetar
interstellar
Isometrien
Isospin
Isotop
ITER
J
Jahreszeiten
Jansky
Jeans-Masse
Jet
K
Kaluza-Klein-Theorie
Kaup-Grenzmasse
Kaonen
Kataklysmische Veränderliche
Keine-Haare- Theorem
Kepler-Gesetze
Kerr-de-Sitter- Lösung
Kerr-Lösung
Kerr-Newman- de-Sitter- Lösung
Kerr-Newman- Lösung
Kerr-Schild- Koordinaten
Killing-Felder
Killing-Tensor
K-Korrektur
Koinzidenzproblem
Kollapsar
Kompaktes Objekt
Kompaktheit
Kompaktifizierung
Kompaneets-Gleichung
konforme Transformation
Kongruenz
Koordinatensingularität
Kopenhagener Deutung
Korona
Korrespondenzprinzip
Kosmische Strahlung
Kosmische Strings
Kosmographie
Kosmologie
Kosmologische Konstante
Kosmologisches Prinzip
kovariante Ableitung
Kovarianzprinzip
Kreisbeschleuniger
Kretschmann-Skalar
Krümmungstensor
Kruskal-Lösung
Kugelsternhaufen
L
Laborsystem
Ladung
Lagrange-Punkte
Lambda-Universum
Lapse-Funktion
Laserleitstern
Lense-Thirring- Effekt
Leptonen
Leptonen-Ära
Leptoquarks
Leuchtkraft
Leuchtkraftdistanz
Levi-Civita- Zusammenhang
Licht
Lichtjahr
Lichtkurve
Lie-Ableitung
Linearbeschleuniger
LINER
Linienelement
LIRG
LMXB
LNRF
Lokale Gruppe
Loop-Quantengravitation
Lorentz-Faktor
Lorentzgruppe
Lorentzinvarianz
Lorentz-Kontraktion
Lorentz-Transformation
Lundquist-Zahl
Luxon
M
Machscher Kegel
Machsches Prinzip
Machzahl
Magnetar
magnetische Rotationsinstabilität
Magnetohydrodynamik
Magnitude
marginal gebundene Bahn
marginal stabile Bahn
Markariangalaxie
Maxwell-Tensor
Membran-Paradigma
Mesonen
Metall
Metrik
Mikroblazar
Mikrolinse
Mikroquasar
Milchstraße
Minkowski-Metrik
Missing-Mass- Problem
mittelschwere Schwarze Löcher
MOND
Monopolproblem
Morphismus
M-Theorie
Myonen
N
Neutrino
Neutronenreaktionen
Neutronenstern
Newtonsche Gravitation
No-Hair-Theorem
Nova
Nukleon
Nukleosynthese
Nullgeodäte
O
Öffnung
Olbers-Paradoxon
O-Prozess
Oppenheimer-Volkoff- Grenze
optische Tiefe
Orthogonalität
P
Paradoxon
Paralleluniversum
Parsec
partielle Ableitung
Pauli-Prinzip
Penrose-Diagramm
Penrose-Prozess
Pentaquark
Periastron
Perigäum
Perihel
periodisch
persistent
Petrov-Klassifikation
PG1159-Sterne
Phantom-Energie
Photon
Photonenorbit
Photosphäre
Pion
Pioneer-Anomalie
Planck-Ära
Planckscher Strahler
Planck-Skala
Planet
Planetarische Nebel
Poincarégruppe
Poincaré- Transformation
Polytrop
Population
Post-Newtonsche Approximation
Poynting-Fluss
pp-Kette
p-Prozess
Prandtl-Zahl
primordiale Schwarze Löcher
Prinzip minimaler gravitativer Kopplung
Protostern
Pseudo-Newtonsche Gravitation
Pulsar
Pulsierendes Universum
Pyknonukleare Reaktionen
Q
QPO
Quant
Quantenchromodynamik
Quantenelektrodynamik
Quantenfeldtheorie
Quantengravitation
Quantenkosmologie
Quantenschaum
Quantensprung
Quantentheorie
Quantenvakuum
Quantenzahlen
Quark-Ära
Quark-Gluonen- Plasma
Quarks
Quarkstern
Quasar
quasi-periodisch
Quasi-periodische Oszillationen
Quelle
Quintessenz
R
Radioaktivität
Radiogalaxie
Radion
Randall-Sundrum- Modelle
Randverdunklung
Raumzeit
Rayleigh-Jeans- Strahlungsformel
Ray Tracing
Reichweite
Reionisation
Reissner-Nordstrøm- de-Sitter- Lösung
Reissner-Nordstrøm- Lösung
Rekombination
relativistisch
Relativitätsprinzip
Relativitätstheorie
Renormierung
Reverberation Mapping
Reynolds-Zahl
RGB-Bild
Ricci-Tensor
Riemann-Tensor
Ringsingularität
Robertson-Walker- Metrik
Robinson-Theorem
Roche-Volumen
Röntgendoppelstern
Roter Riese
Roter Zwerg
Rotverschiebung
Rotverschiebungsfaktor
r-Prozess
RRAT
RR Lyrae-Sterne
Ruhesystem
S
Schallgeschwindigkeit
scheinbare Größe
Schleifen- Quantengravitation
Schwache Wechselwirkung
Schwarzer Körper
Schwarzer Zwerg
Schwarzes Loch
Schwarzschild-de-Sitter- Lösung
Schwarzschild-Lösung
Schwarzschild-Radius
Schwerkraft
Seltsamer Stern
Seltsamkeit
Seyfert-Galaxie
Singularität
skalares Boson
SNR
Soft Gamma-Ray Repeater
Sonne
Spektraltyp
Spezialität
Spezielle Relativitätstheorie
Spin
Spin-Netzwerk
Spinschaum
Spin-Statistik-Theorem
Spintessenz
s-Prozess
Standardkerzen
Standardmodell
Standardscheibe
Starke Wechselwirkung
Statisches Universum
Staubtorus
Stefan-Boltzmann- Gesetz
stellare Schwarze Löcher
Stern
Sternentstehung
Strange Star
Stringtheorien
Subraum
Supergravitation
supermassereiche Schwarze Löcher
Supernova
Supernovaremnant
Superstringtheorie
Supersymmetrie
Symbiotische Sterne
Symmetrie
Symmetriebrechung
Symmetriegruppe
Synchrotron
Synchrotronstrahlung
Synchrozyklotron
T
Tachyon
Tagbogen
Tardyon
Teilchen
Teilchenbeschleuniger
Tensorboson
Tensoren
Tetraden
Tetraquark
TeVeS
Thermodynamik
thermonukleare Fusion
Tiefenfeldbeobachtung
Tierkreis
TNO
Topologie
topologische Defekte
Torsionstensor
Trägheit
transient
Transit
Triple-Alpha-Prozess
T Tauri Stern
Tunneleffekt
U
ULIRG
ULX
Unifikation
Unitarität
Universum
Unruh-Effekt
Urknall
V
Vakuum
Vakuumstern
Vektorboson
Velapulsar
Veränderliche
Vereinheitlichung
Viele-Welten- Theorie
VLA
VLBI
VLT
VLTI
Voids
VSOP
W
Walker-Penrose- Theorem
Weakonen
Weinberg-Winkel
Weiße Löcher
Weißer Zwerg
Wellenfunktion
Weylsches Postulat
Weyl-Tensor
Wheeler-DeWitt- Gleichung
Wiensche Strahlungsformel
Wilson-Loop
WIMP
Wolf-Rayet-Stern
w-Parameter
Wurmlöcher
X
X-Bosonen
X-Kraft
X-ray burster
Y
Y-Bosonen
Yerkes- Leuchtkraftklassen
YSO
Yukawa-Potential
Z
ZAMO
Zeit
Zeitdilatation
Zodiakallicht
Zustandsgleichung
Zustandsgröße
Zwerge
Zwergplanet
Zwillingsparadoxon
Zyklisches Universum
Zyklotron