Start Web-Artikel Lexikon Vorträge Ausbildung Essays Rhetorik Links Autor Kontakt |
Astro-Lexikon I 3 Isotop
Ein Atom besteht aus einer Atomhülle und einem Atomkern. In der Atomhülle befinden sich elektrisch negativ geladene
Elektronen, die zur Familie der Leptonen gehören. Im Atomkern gibt es elektrisch positiv
geladene Protonen und elektrisch neutrale Neutronen; beide Teilchensorten werden als
Nukleonen (Kernteilchen) zusammengefasst.
Diese drei Angaben werden in der Form AZX notiert; da eigentlich eine Zahl überflüssig ist, liest man auch häufig nur X-A. Zur Atommasse Die Atommasse A ergibt sich gerade als Summe der Protonenzahl und Neutronenzahl. Sie wird in atomaren Masseneinheiten u angegeben. Eine atomare Masseneinheit ist definiert als der zwölfte Teil der Masse eines Kohlenstoffatoms mit der Bezeichnung C-12. Möchte man die Atommasse in die Si-Einheit Kilogramm oder in die Energieeinheit Elektronenvolt umrechnen, so gilt: 1 u = 1.6605402 × 10-27 kg ~ 931.4943 MeV Beispiele Nehmen wir an, es handelt sich um Kohlenstoff, der sechs Protonen und sechs Neutronen, also 12 Nukleonen hat. Die erste Schreibweise ist 126C und die zweite C-12. Ein Beispiel eines besonders schweren Elements ist Uran mit 92 Protonen und 146 Neutronen, also 238 Nukleonen. Hier schreibt man 23892U bzw. U-238. Was sind nun Isotope?
Das Isotop eines Elements hat nun die gleiche Anzahl an Protonen im Atomkern (also die gleiche Kernladungszahl Z) wie das
betreffende Element, aber eine unterschiedliche Anzahl an Neutronen (also eine andere Atommasse A). Etymologie Das Wort Isotop kommt aus dem Griechischen und bedeutet iso: 'gleich' und topos: 'Ort' - gemeint ist der gleiche Ort im Periodensystem der Elemente, denn Isotope verhalten sich chemisch gleich, weil sie alle dieselbe Protonenzahl haben. Sie unterscheiden sich nur in ihrem Gewicht und ihrem kernphysikalischen Verhalten. Isotope in der Astrophysik
Die genaue Kenntnis des Isotops ist natürlich wichtig in der Kernphysik. Ein einfaches Beispiel ist die Bilanz in der Radioaktivität,
wie α-Zerfall, β-Zerfall und γ-Zerfall. ITER
Seit Jahrzehnten plant ein internationales Konsortium ein ehrgeiziges und teueres Projekt: den Bau und die Inbetriebnahme von Fusionskraftwerken. In solchen Kraftwerken soll das Prinzip der Energieumwandlung genutzt werden, wie es auf der Sonne seit Jahrmilliarden abläuft: die thermonukleare Fusion. ITER auf dem Weg Die Planungsphase ist nun endlich in den Beginn der Bauphase übergetreten: Im Juli 2005 wurde beschlossen die internationale Fusionstestanlage ITER (lat. für 'Weg' oder 'Reise') in Cadarache (Südfrankreich) zu bauen. Man darf den Projektnamen wohl so verstehen, dass die internationale Kollaboration die wirtschaftliche Nutzung von Fusionsenergie auf den Weg bringen will. Das internationale Projekt steht zurzeit unter der Beteiligung der EU, der USA, Russland, Japan, China und Südkorea. Sie teilen sich die Baukosten von 4.6 Mrd. Euro für die Umsetzung des Projekts. Die Betriebskosten des Fusionskraftwerks werden sich jährlich wahrscheinlich auf 265 Mio. Euro belaufen. Ziel: Machbarkeitsstudie der Fusionsenergie Erklärtes Projektziel ist es, die Machbarkeit (den proof of concept) eines Fusionskraftwerks zu beweisen. Vor allem soll demonstriert werden, dass die kontrollierte Fusion Energie liefert, die wirtschaftlich genutzt werden kann. Ziel ist insbesondere ein Energiegewinnungsfaktor von mindestens 10, d.h. das Zehnfache der zur Plasmaheizung benötigten Energie soll wieder als Fusionsenergie frei werden. Nur dann sind Fusionskraftwerke wirtschaftlich lukrativ. Prinzip des Fusionskraftwerkes Das Prinzip des Fusionskraftwerkes ist es, das leichteste und häufigste Atom - Wasserstoff - zu Helium zu verschmelzen. Es handelt sich demnach um das oben beschriebene Wasserstoffbrennen, das nach dem Motto 'Pack die Sonne in den Tank' dauerhaft auf die Erde geholt werden soll. Das Brennstoffgemisch besteht aus den Wasserstoffisotopen Deuterium und Tritium, die aus einem Proton und einem Neutron bzw. einem Proton und zwei Neutronen bestehen. Auf der Erde müssen allerdings deutlich höhere Zündtemperaturen als im Sonneninnern ermöglicht werden, weil das irdische Plasma eine viel kleinere Dichte (1014 Teilchen/cm3) aufweist: 100 Millionen Grad sind nötig! Herausforderung: Plasma soll extrem heiß bleiben
Um ein Abkühlen des Plasmas zu vermeiden, darf es auf keinen Fall die Wände des Reaktors berühren.
Genau das ist ein gravierendes, technisches Problem. Das extrem erhitzte Plasma wird in einem schlauchförmigen
Gebilde (Torus) mithilfe von starken Magnetfeldern eingeschlossen. Die Kunst besteht darin, die richtige
Konfiguration der Magnetfelder zu ermitteln. Projektstatus & Ausblick
Nach dem nun beschlossenen Standort von ITER, wird es weitere zehn Jahre dauern bis der Bau abgeschlossen ist.
Dann werden etwa 600 Mitarbeiter zwanzig Jahre lang am Projekt arbeiten. Wirtschaftlich nutzbar wird die
Energie aus Fusion auf der Erde vermutlich erst in etwa 50 Jahren! Es ist sowohl zeitlich, als auch
finanziell ein Mammutvorhaben, das jedoch hoffentlich eine 'astronomische Rendite' haben wird.
© Andreas Müller, August 2007
|
IndexA
AbbremsparameterADAF ADD-Szenario ADM-Formalismus AdS/CFT-Korrespondenz AGB-Stern Äquivalenzprinzip Akkretion Aktiver Galaktischer Kern Alfvén-Geschwindigkeit Alfvén-Zahl Allgemeine Relativitätstheorie Alpha-Zerfall AMR anthropisches Prinzip Antigravitation Antimaterie Apastron Apertursynthese Aphel Apogäum Astronomie Astronomische Einheit asymptotisch flach Auflösungsvermögen Axion AXP B
Balbus-Hawley- InstabilitätBardeen-Beobachter Baryogenese Baryonen baryonische Materie Bekenstein-Hawking- Entropie Beobachter Beta-Zerfall Bezugssystem Bianchi-Identitäten Big Bang Big Bounce Big Crunch Big Rip Big Whimper Birkhoff-Theorem Blandford-Payne- Szenario Blandford-Znajek- Mechanismus Blauverschiebung Blazar BL Lac Objekt Bogenminute Bogensekunde Bosonen Bosonenstern Boyer-Lindquist- Koordinaten Bran Brans-Dicke- Theorie Brauner Zwerg Brill-Wellen Bulk C
Carter-KonstanteCasimir-Effekt Cauchy-Fläche Cepheiden Cerenkov-Strahlung Chandrasekhar-Grenze Chaplygin-Gas Chiralität Christoffel-Symbol CMB CNO-Zyklus Comptonisierung Cosmon C-Prozess D
Deep FieldsDerricks Theorem de-Sitter- Kosmos DGP-Szenario Diffeomorphismus differenzielle Rotation Distanzmodul Dodekaeder-Universum Doppler-Effekt Drei-Kelvin-Strahlung Dunkle Energie Dunkle Materie E
Eddington-Finkelstein- KoordinatenEddington-Leuchtkraft Effektivtemperatur Eichtheorie Einstein-Ring Einstein-Rosen- Brücke Einstein-Tensor Eisenlinie Eklipse Ekliptik Ekpyrotisches Modell Elektromagnetismus Elektronenvolt elektroschwache Theorie Elementarladung Energie Energiebedingungen Energie-Impuls-Tensor Entfernungsmodul eos eos-Parameter Epizykel Ereignishorizont erg Ergosphäre eV Extinktion Extradimension extragalaktisch extrasolar extraterrestrisch Exzentrizität F
FalschfarbenbildFanaroff-Riley- Klassifikation Faraday-Rotation Farbindex Farbladung Farbsupraleitung Feldgleichungen Fermi-Beschleunigung Fermionen Fermionenstern Fernparallelismus Feynman-Diagramm FFO FIDO Flachheitsproblem FLRW-Kosmologie Fluchtgeschwindigkeit Frame-Dragging f(R)-Gravitation Friedmann-Weltmodell G
Galaktischer Schwarz-Loch-KandidatGalaxie Gamma Ray Burst Gamma-Zerfall Geodäte Geometrisierte Einheiten Geometrodynamik Gezeitenkräfte Gezeitenradius Gluonen Grad Granulation Gravastern Gravitation Gravitationskollaps Gravitationskühlung Gravitationslinse Gravitationsradius Gravitations- rotverschiebung Gravitationswellen Gravitomagnetismus Graviton GRBR Große Vereinheitlichte Theorien Gruppe GUT GZK-cutoff H
HadronenHadronen-Ära Hamilton-Jacobi- Formalismus Harvard-Klassifikation Hauptreihe Hawking-Strahlung Hawking-Temperatur Helizität Helligkeit Herbig-Haro- Objekt Hertzsprung-Russell- Diagramm Hierarchieproblem Higgs-Teilchen Hilbert-Raum Hintergrundmetrik Hintergrundstrahlung HLX HMXB Holostern Homogenitätsproblem Horizont Horizontproblem Horn-Universum Hubble-Gesetz Hubble-Klassifikation Hubble-Konstante Hydrodynamik hydrostatisches Gleichgewicht Hyperladung Hypernova Hyperonen I
ICInertialsystem Inflation Inflaton intergalaktisch intermediate-mass black hole interplanetar interstellar Isometrien Isospin Isotop ITER J
JahreszeitenJansky Jeans-Masse Jet K
Kaluza-Klein-TheorieKaup-Grenzmasse Kaonen Kataklysmische Veränderliche Keine-Haare- Theorem Kepler-Gesetze Kerr-de-Sitter- Lösung Kerr-Lösung Kerr-Newman- de-Sitter- Lösung Kerr-Newman- Lösung Kerr-Schild- Koordinaten Killing-Felder Killing-Tensor K-Korrektur Koinzidenzproblem Kollapsar Kompaktes Objekt Kompaktheit Kompaktifizierung Kompaneets-Gleichung konforme Transformation Kongruenz Koordinatensingularität Kopenhagener Deutung Korona Korrespondenzprinzip Kosmische Strahlung Kosmische Strings Kosmographie Kosmologie Kosmologische Konstante Kosmologisches Prinzip kovariante Ableitung Kovarianzprinzip Kreisbeschleuniger Kretschmann-Skalar Krümmungstensor Kruskal-Lösung Kugelsternhaufen L
LaborsystemLadung Lagrange-Punkte Lambda-Universum Lapse-Funktion Laserleitstern Lense-Thirring- Effekt Leptonen Leptonen-Ära Leptoquarks Leuchtkraft Leuchtkraftdistanz Levi-Civita- Zusammenhang Licht Lichtjahr Lichtkurve Lie-Ableitung Linearbeschleuniger LINER Linienelement LIRG LMXB LNRF Lokale Gruppe Loop-Quantengravitation Lorentz-Faktor Lorentzgruppe Lorentzinvarianz Lorentz-Kontraktion Lorentz-Transformation Lundquist-Zahl Luxon M
Machscher KegelMachsches Prinzip Machzahl Magnetar magnetische Rotationsinstabilität Magnetohydrodynamik Magnitude marginal gebundene Bahn marginal stabile Bahn Markariangalaxie Maxwell-Tensor Membran-Paradigma Mesonen Metall Metrik Mikroblazar Mikrolinse Mikroquasar Milchstraße Minkowski-Metrik Missing-Mass- Problem mittelschwere Schwarze Löcher MOND Monopolproblem Morphismus M-Theorie Myonen N
NeutrinoNeutronenreaktionen Neutronenstern Newtonsche Gravitation No-Hair-Theorem Nova Nukleon Nukleosynthese Nullgeodäte O
ÖffnungOlbers-Paradoxon O-Prozess Oppenheimer-Volkoff- Grenze optische Tiefe Orthogonalität P
ParadoxonParalleluniversum Parsec partielle Ableitung Pauli-Prinzip Penrose-Diagramm Penrose-Prozess Pentaquark Periastron Perigäum Perihel periodisch persistent Petrov-Klassifikation PG1159-Sterne Phantom-Energie Photon Photonenorbit Photosphäre Pion Pioneer-Anomalie Planck-Ära Planckscher Strahler Planck-Skala Planet Planetarische Nebel Poincarégruppe Poincaré- Transformation Polytrop Population Post-Newtonsche Approximation Poynting-Fluss pp-Kette p-Prozess Prandtl-Zahl primordiale Schwarze Löcher Prinzip minimaler gravitativer Kopplung Protostern Pseudo-Newtonsche Gravitation Pulsar Pulsierendes Universum Pyknonukleare Reaktionen Q
QPOQuant Quantenchromodynamik Quantenelektrodynamik Quantenfeldtheorie Quantengravitation Quantenkosmologie Quantenschaum Quantensprung Quantentheorie Quantenvakuum Quantenzahlen Quark-Ära Quark-Gluonen- Plasma Quarks Quarkstern Quasar quasi-periodisch Quasi-periodische Oszillationen Quelle Quintessenz R
RadioaktivitätRadiogalaxie Radion Randall-Sundrum- Modelle Randverdunklung Raumzeit Rayleigh-Jeans- Strahlungsformel Ray Tracing Reichweite Reionisation Reissner-Nordstrøm- de-Sitter- Lösung Reissner-Nordstrøm- Lösung Rekombination relativistisch Relativitätsprinzip Relativitätstheorie Renormierung Reverberation Mapping Reynolds-Zahl RGB-Bild Ricci-Tensor Riemann-Tensor Ringsingularität Robertson-Walker- Metrik Robinson-Theorem Roche-Volumen Röntgendoppelstern Roter Riese Roter Zwerg Rotverschiebung Rotverschiebungsfaktor r-Prozess RRAT RR Lyrae-Sterne Ruhesystem S
Schallgeschwindigkeitscheinbare Größe Schleifen- Quantengravitation Schwache Wechselwirkung Schwarzer Körper Schwarzer Zwerg Schwarzes Loch Schwarzschild-de-Sitter- Lösung Schwarzschild-Lösung Schwarzschild-Radius Schwerkraft Seltsamer Stern Seltsamkeit Seyfert-Galaxie Singularität skalares Boson SNR Soft Gamma-Ray Repeater Sonne Spektraltyp Spezialität Spezielle Relativitätstheorie Spin Spin-Netzwerk Spinschaum Spin-Statistik-Theorem Spintessenz s-Prozess Standardkerzen Standardmodell Standardscheibe Starke Wechselwirkung Statisches Universum Staubtorus Stefan-Boltzmann- Gesetz stellare Schwarze Löcher Stern Sternentstehung Strange Star Stringtheorien Subraum Supergravitation supermassereiche Schwarze Löcher Supernova Supernovaremnant Superstringtheorie Supersymmetrie Symbiotische Sterne Symmetrie Symmetriebrechung Symmetriegruppe Synchrotron Synchrotronstrahlung Synchrozyklotron T
TachyonTagbogen Tardyon Teilchen Teilchenbeschleuniger Tensorboson Tensoren Tetraden Tetraquark TeVeS Thermodynamik thermonukleare Fusion Tiefenfeldbeobachtung Tierkreis TNO Topologie topologische Defekte Torsionstensor Trägheit transient Transit Triple-Alpha-Prozess T Tauri Stern Tunneleffekt U
ULIRGULX Unifikation Unitarität Universum Unruh-Effekt Urknall V
VakuumVakuumstern Vektorboson Velapulsar Veränderliche Vereinheitlichung Viele-Welten- Theorie VLA VLBI VLT VLTI Voids VSOP W
Walker-Penrose- TheoremWeakonen Weinberg-Winkel Weiße Löcher Weißer Zwerg Wellenfunktion Weylsches Postulat Weyl-Tensor Wheeler-DeWitt- Gleichung Wiensche Strahlungsformel Wilson-Loop WIMP Wolf-Rayet-Stern w-Parameter Wurmlöcher X
X-BosonenX-Kraft X-ray burster Y
Y-BosonenYerkes- Leuchtkraftklassen YSO Yukawa-Potential Z
ZAMOZeit Zeitdilatation Zodiakallicht Zustandsgleichung Zustandsgröße Zwerge Zwergplanet Zwillingsparadoxon Zyklisches Universum Zyklotron |