Start Web-Artikel Lexikon Vorträge Ausbildung Essays Rhetorik Links Autor Kontakt |
Astro-Lexikon S 1 Schallgeschwindigkeit
Die Schallgeschwindigkeit cs ist die Geschwindigkeit einer akustischen Welle, die davon abhängt, in welchem Medium sich der Schall ausbreitet. Eine Schallwelle ist im Prinzip ein Druckunterschied, der sich wellenförmig, z.B. in Luft oder in Wasser, ausbreitet. Schallwellen sind longitudinale Wellen, d.h. die Schwingung der Welle findet in die Richtung wie die Ausbreitung der Welle statt. Wie schnell ist der Schall in Luft? Die Schallgeschwindigkeit cs besitzt in Luft nur eine Temperaturabhängigkeit und lässt sich gut unter der Annahme eines idealen Gases (siehe auch Zustandsgleichung) berechnen: cs2 = (cp/cV)×R×T/M, hierin sind cp die spezifische Wärme bei konstantem Druck und cV die spezifische Wärme bei konstantem Volumen, R ist die spezifische Gaskonstante, M die Molmasse des Gases und T die Temperatur in Kelvin. γ = cp/cV beträgt im Gasgemisch Luft etwa 1.4 (Stickstoff und Sauerstoff sind zweiatomige Moleküle). Die Gaskonstante R ist das Produkt aus Avogadro-Zahl NA = 6.0221 × 1023 Teilchen und Boltzmann-Konstante k = 1.380658 × 10-23 J/K und beträgt 8.31451 J mol-1 K-1. Die Molmasse von Luft lässt sich schnell berechnen: Luft ist ein Gasgemisch aus Stickstoff (N, 78%), Sauerstoff (O, 21%) und Edelgasen (Ar, 1%). Die Molmassen dieser einzelnen Spezies sind:
wobei unter den Edelgasen vor allem Argon dominiert. Die Molmasse gibt an, wie viel ein Mol (Zähleinheit!), also etwa 6 × 1023 Teilchen der betreffenden Spezies wiegen. Geeicht wurde die Skala am Kohlenstoffisotop C-12. Ein Mol dieses Kohlenstoffs wiegt gerade 12 g. Ein Mol des einatomigen Edelgases Argon wiegt daher 40 g. Ein Mol Sauerstoff, was ein zweiatomiges Gas ist, wiegt 2 × 16 g = 32 g. Ein Mol des Gasgemischs Luft wiegt unter obiger Prämisse gerade (0.78×28 + 0.21×32 + 0.01×40) g = 28.96 g. Setzt man also in die Gleichung für die Schallgeschwindigkeit in Luft diese Werte (Temperatur sei 293 K, also Raumtemperatur) und Konstanten ein, so erhält man eine Schallgeschwindigkeit in Luft von 343 m/s. Wie schnell ist der Schall in Wasser? Prinzipiell funktioniert diese Methode auch bei der Berechnung der Schallgeschwindigkeit in Wasser, nur besitzt sie hier eine kompliziertere Abhängigkeit als in einem idealen Gas, nämlich von Temperatur, Druck, gelösten Gasen etc. Schall, was ja nichts anders ist, als eine sich im Raum ausbreitende Dichtefluktuation, propagiert in Wasser viel schneller, als in der Luft, weil die Kopplung der Schwinger (Wasser- gegenüber Luftmolekülen) viel effizienter ist. Die Schallgeschwindigkeit beträgt in Wasser 1450 m/s. Überschallgeschwindigkeit Bei Objekten, die sich schneller als der Schall im jeweiligen Medium fortpflanzen, wird die Machzahl größer als 1, und es bildet sich ein Machscher Kegel aus. Geschwindigkeitsrekord in Luft Der irdische Geschwindigkeitsrekord eines künstlichen Flugkörpers wurde mit einem Hyperschall-Fluggerät der NASA aufgestellt (März 2004). Der unbemannte Prototyp x-43A erreichte über dem Pazifik eine Geschwindigkeit von 7700 km/h! Der Technologiesprung wurde durch eine revolutionäre Raketenantriebstechnik erreicht, die direkt den Sauerstoff der Umgebungsluft nutzt. So muss diese Komponente des Treibstoffs nicht aufwendig im Flugkörper mitgeführt werden. scheinbare Größe
Objekte am Himmel haben eine bestimmte Entfernung zum Beobachter auf der Erde. Himmelskörper erscheinen umso kleiner, je weiter sie entfernt sind. Die von der Entfernung abhängige Ausdehnung nennt man in der Astronomie scheinbare Größe. Sie wird im Gradmaß in Einheiten von Grad, Bogenminute und Bogensekunde angegeben. Größe am Himmel Die Abbildung oben illustriert, wie man die scheinbare Größe eines Objekts aus dessen tatsächlichen Radius R und der Objektdistanz d mittels der trigonometrischen Tangensfunktion berechnet. Grad, Bogenminute und Bogensekunde sind gewissermaßen die natürlichen Längeneinheiten von Beobachtern, während Theoretiker spezielle Längeneinheiten haben, die dem Problem bzw. der Skala angepasst sind. Theoretiker haben so vielfältige Längeneinheiten wie beispielsweise Gigalichtjahr, Mpc, kpc, Parsec, Lichtjahr, Lichttag, Gravitationsradius, Schwarzschild-Radius, Lichtstunde, Astronomische Einheit, Sonnenradius, Lichtsekunde, cm, Fermi, Planck-Länge etc. Wie scharf darf's sein? Die hochauflösende, moderne Astronomie erfordert eine weitere Unterteilung der Bogensekunde: So gibt die Millibogensekunde (Abkürzung mas für milliarcsecond) den tausendsten Teil einer Bogensekunde an, und Mikrobogensekunde (Abkürzung μas, μ ist das kleine grch. m, für microarcsecond) entspricht einer Millionstel Bogensekunde. Zahlenbeispiele
Der Vollmond hat im Gradmaß einen (mittleren scheinbaren) Durchmesser von 31 Bogenminuten und 6 Bogensekunden oder 1866'', also
etwas mehr als ein halbes Grad. Die Sonne hat einen scheinbaren Durchmesser von etwa 1914 Bogensekunden
oder 31'54''. Beim Vergleich der scheinbaren Größen von Sonne und Mond fällt auf, dass sie recht nahe beieinander liegen. Dieser
Zufall ermöglicht gerade Sonnenfinsternisse (Eklipsen), wo die Mondscheibe die Sonne abdeckt. Je nach
aktuellem Abstand des Mondes zur Erde variiert die scheinbare Größe des Mondes geringfügig. Daher kann es totale oder ringförmige
Sonnenfinsternisse geben (partielle Sonnenfinsternisse sind dort beobachtbar, wo sich der Halbschatten des Mondes befindet). Schleifen-Quantengravitation
Die Schleifen-Quantengravitation oder Schleifenquantengravitation ist der deutsche Begriff, der gelegentlich für die Loop-Quantengravitation (LQG) zu lesen ist. Welche Schleifen sind gemeint? Die LQG ist eine Quantengravitation, in der die Forscher direkt versucht haben, die Konzepte der Quantentheorie (genauer: der Quantenmechanik) und der Allgemeinen Relativitätstheorie (ART) zu verknüpfen. Ziel: Die Quantisierung der Raumzeit. Die resultierenden Raumzeitquanten werden Wilson-Loops oder kurz Loops (dt. Schleifen) genannt. Quanten der Raumzeit: Loops Die Loops sind schleifenförmige Gebilde, die den Hilbert-Raum der LQG aufbauen. Ihr Zusammenwirken und ihre Anregungen erzeugen gerade die Raumzeit. Diese Raumzeit ist nun nicht mehr glatt und kontinuierlich, wie in Einsteins ART, sondern sie ist quantisiert auf der Planck-Skala. Anstelle von Loops wurden später die Spin-Netzwerke als alternative und mathematisch günstigere Orthonormalbasis gefunden. Quanten der Raumzeit: Loops
Die Loops sind allerdings hypothetische Quanten, die bislang nicht in der Natur beobachtet wurden oder für die es indirekte
Hinweise gibt. Die Schleifen-Quantengravitation bietet allerdings einige interessante Aspekte, die derzeit sowohl experimentell
getestet, als auch in der Theorie weiter entwickelt werden. Weitere Informationen Eine umfangreiche Vorstellung der Theorie der Schleifen-Quantengravitation gibt es unter dem Eintrag Loop-Quantengravitation . Schwache Wechselwirkung
Die schwache Wechselwirkung ist eine Theorie, die bestimmte Formen des radioaktiven Zerfalls erklärt, nämlich die beiden Formen des Beta-Zerfalls. Den Terminus 'schwach' verdankt die Wechselwirkung ihrer äußerst kurzen Reichweite von nur 10-15 cm (etwa einem Hundertstel des klassischen Protonendurchmessers!). 'Schwach' heißt sie auch deshalb, weil sie - verglichen mit den anderen drei fundamentalen Wechselwirkungen (gravitative, elektromagnetische und starke) - keine besonders hohe relative Stärke besitzt. Schwächste Naturkraft, aber wichtig Da sich schwach wechselwirkende Teilchen erst einmal bis auf diese kurze Distanz nähern müssen und dies recht selten vorkommt, ist diese schwache Wechselwirkung ein relativ rar auftretendes Ereignis - jedenfalls verglichen mit den andern Naturkräften. Zum Glück ist das so, sonst würde alles, was uns umgibt und aus dem wir bestehen - im Wesentlichen baryonische Materie - zerfallen! Bei gleichnamig geladenen Teilchenspezies müssen die beteiligten Partner soviel kinetische Energie aufbringen, um die elektromagnetische Abstoßung (den so genannten Coulomb-Wall) zu überwinden: erst dann kommen sie sich überhaupt so nahe, dass sie 'schwache Kräfte spüren'. alle Teilchen haben eine Schwäche für die schwache Kraft Alle Leptonen sind per definitionem schwach wechselwirkende Teilchen, die von der starken Wechselwirkung ausgeschlossen sind. Der Grund dafür ist, dass Leptonen keine Farbladung tragen. Zu den Leptonen zählen u.a. die Elektronen, die Positronen (ihre Antiteilchen), die Myonen und Tauonen ('schwere Elektronen') und die Neutrinos. Alle Teilchen hingegen tragen eine schwache Hyperladung, so dass alle Teilchen schwach wechselwirken können. Beta-Zerfall und Erhaltungssätze Beim β--Zerfall wandelt sich ein im Atomkern des Radionuklids gebundenes Neutron in ein Proton, ein Elektron und ein Anti-Neutrino um. Es handelt sich um einen Dalitz-Zerfall, der ein kontinuierliches Energiespektrum der drei Zerfallsprodukte nach sich zieht, weil die (kinetischen) Energien auf drei Teilchen verteilt werden können. Die Erhaltungssätze von Quantenzahlen (Energie, Impuls, Ladung und Leptonenzahl) sind bei der Zerfallsgleichung immer zu beachten! So ist es wesentlich, dass ein Anti-Neutrino entsteht (Leptonenzahl -1), weil ebenfalls ein Elektron (Leptonenzahl +1) frei wird, während auf der linken Seite der Reaktionsgleichung ein Zerfallskern steht (Leptonenzahl 0). Sollte sich das Neutrino als Majorana-Teilchen (sein eigenes Antiteilchen) herausstellen, so ist diese Unterscheidung hinfällig. Mehr noch: die Leptonenzahlerhaltung wäre verletzt und würde als Erhaltungssatz nicht mehr gelten! Die freiwerdenden Elektronen bzw. Positronen im Beta-Zerfall nennt man auch Betastrahlung. Beta-Zerfälle auf dem Quarkniveau
Die Abbildung rechts zeigt das Feynman-Diagramm des β--Zerfalls auf der Ebene der Quarks:
bei diesem β-Zerfall wandelt sich also ein Down-Quark (d) in ein Up-Quark (u) um, während ein negativ geladenes W-Teilchen ausgetauscht wird. Das W-Teilchen
muss genau diese Ladung wegen des Erhaltungssatzes der elektrischen Ladung haben. Man liest das Feynman-Diagramm von unten nach oben und stellt fest, dass sich durch
diese Quarkverwandlung das Neutron (n) in ein Proton (p) verwandelt hat. Leptonenzahl- und Ladungserhaltung erfordern schließlich auch die Entstehung eines
Elektrons (e-) und eines Anti-Elektronneutrinos (ganz rechts im Diagramm). Anmerkung: Zerfall des freien Protons Der Zerfall eines freien Protons ist erst eine zwingende Folge der Großen Vereinheitlichten Theorien (GUT) - das wurde jedoch noch nicht experimentell beobachtet! Nach dem Protonenzerfall wird mit großen Wassertanks mithilfe von Cerenkov-Zählern gesucht. Wasser enthält extrem viele Protonen in Form von Wasserstoffkernen (H2O). Die Cerenkov-Zähler detektieren die elektromagnetische Szintillationsstrahlung, die frei wird, wenn ein Proton in kleinere Bestandteile zerfällt. Das Problem bei dieser Suche ist, dass die Zerfallszeit des freien Protons mit 1032 Jahren enorm groß ist. Durch eine große Wassermenge erwartet man wenigstens einige Ereignisse pro Monat. W-, W+, Z0 - Boten der schwachen Kraft Das negativ geladene W--Teilchen (Masse 81 GeV) ist nun eines der drei schweren Austauschteilchen der schwachen Wechselwirkung. Daneben gibt es noch ein positiv geladenes W+-Teilchen (ebenfalls 81 GeV Masse) und ein neutrales Z0-Teilchen, das das schwerste (Masse 91 GeV) unter den schwachen Vektorbosonen ist. Diese drei Eichbosonen der schwachen Wechselwirkung nennt man gelegentlich auch Weakonen. Die W-Teilchen sind die einzigen Eichbosonen des Standardmodells, die eine elektrische Ladung tragen. Teilchenphysiker bezeichnen sie auch im Fachjargon als 'geladene Ströme', wohingegen die Z-Teilchen 'neutrale Ströme' sind. Wegen der Gültigkeit der Ladungszahlerhaltung, vermögen die W-Teilchen die Ladung beteiligter Teilchen im schwachen Prozess zu ändern (ladungsändernde Prozesse, Prozesse geladener Ströme). Das positiv geladene W-Teilchen wird entsprechend beim β+-Zerfall ausgetauscht. Pioniere & Spin-Algebren Ein erster Zugang zur Quantenfeldtheorie der schwachen Wechselwirkung war die Glashow-Weinberg-Salam-Theorie (GWS-Modell). Diese Physiker versuchten die Erfolge der renormierten Yang-Mills-Theorie in der starken Wechselwirkung auch auf die schwache Wechselwirkung zu übertragen. Eine entscheidende Rolle spielt bei diesen Betrachtungen der schwache Isospin. Genauso wie der Spin gehorchen Isospin und schwacher Isospin der Drehimpulsalgebra der Quantenmechanik. Die Physiker unterscheiden bei einem Spin S entsprechend 2S+1 verschiedenen Spinzustände (für ein Teilchen mit Masse). Ist S = 0, so gibt es nur einen (2×0+1 = 1) Spinzustand. Die Teilchenphysiker sagen dazu Spinsingulett. Ist hingegen S = 1/2, so gibt es 2×1/2+1 = 2 Zustände; dies ist das Spindublett. S = 1 generiert 2×1+1 = 3 Zustände, das Spintriplett. Mit diesen unterschiedlichen 'Zuständen' sind bei Isospin und schwachem Isospin unterschiedliche Teilchen assoziiert. Die Teilcheneigenschaft Spin ordnet mit dieser Systematik den Teilchenzoo. Heisenberg: Erfinder des Isospins Isospin-Symmetrie bedeutet in diesem Zusammenhang, dass man alle Protonen durch Neutronen ersetzen kann, ohne dass sich die Verhältnisse ändern. Diese Idee geht auf Werner Heisenberg zurück, der die Nukleonen als Isospindublett (Isospin 1/2) auffasste. Neutron und Proton unterscheiden sich nur in der dritten Komponente des Isospins, der so genannten Isospinprojektion. linkshändige und rechtshändige Welt Der schwache Isospin wiederum differenziert zwischen den verschiedenen Leptonen. Die linkshändigen Leptonen sind schwache Isospindubletts, während die rechtshändigen Leptonen schwache Isospinsinguletts sind (siehe zur Händigkeit auch Helizität und Chiralität). Der entscheidende Unterschied zwischen links- und rechtshändigen Teilchen ist, dass nur die linkshändigen an der schwachen Wechselwirkung teilhaben. Hinzu kommt, dass es linkshändige Neutrinos nur gibt, wenn sie eine Ruhemasse haben. Dies wurde im Experiment Superkamiokande 1998 in Japan nachgewiesen! Auf dem Weg zur Weltformel
In der elektroschwachen Theorie (Weinberg-Salam-Modell) ist es gelungen, die
Quantenelektrodynamik (QED) mit der schwachen Wechselwirkung zu vereinigen. Dies war der
Wegbereiter der Großen Vereinheitlichten Theorien (GUT) und der Vereinheitlichten Theorie (Unified Theory, UT). Die relativen Stärken
der schwachen, starken und elektromagnetischen Wechselwirkung gleichen sich auf der GUT-Energieskala von etwa 2 × 1016 GeV einander
an und können als eine Kraft, als X-Kraft, beschrieben werden. Experimentelle Evidenz für die
Unifikation der Kräfte sind die laufenden Kopplungskonstanten: Die drei Kopplungskonstanten, die mit
elektromagnetischer, schwacher und starker Kraft assoziiert sind, nähern sich zu hohen Energien des betrachteten Prozesses hin an. Ist der
Konvergenzpunkt bei einer bestimmten kritischen, hohen Energie erreicht, macht es keinen Sinn mehr, die Kräfte voneinander zu unterscheiden.
Allerdings ist die Supersymmetrie erforderlich, damit sich die Kopplungskonstanten wirklich in genau einem
Konvergenzpunkt treffen. Schwarzer Körper
Ein Schwarzer Körper (engl. black body) ist ein idealer Wärmestrahler - siehe dazu Planckscher Strahler.
© Andreas Müller, August 2007
|
IndexA
AbbremsparameterADAF ADD-Szenario ADM-Formalismus AdS/CFT-Korrespondenz AGB-Stern Äquivalenzprinzip Akkretion Aktiver Galaktischer Kern Alfvén-Geschwindigkeit Alfvén-Zahl Allgemeine Relativitätstheorie Alpha-Zerfall AMR anthropisches Prinzip Antigravitation Antimaterie Apastron Apertursynthese Aphel Apogäum Astronomie Astronomische Einheit asymptotisch flach Auflösungsvermögen Axion AXP B
Balbus-Hawley- InstabilitätBardeen-Beobachter Baryogenese Baryonen baryonische Materie Bekenstein-Hawking- Entropie Beobachter Beta-Zerfall Bezugssystem Bianchi-Identitäten Big Bang Big Bounce Big Crunch Big Rip Big Whimper Birkhoff-Theorem Blandford-Payne- Szenario Blandford-Znajek- Mechanismus Blauverschiebung Blazar BL Lac Objekt Bogenminute Bogensekunde Bosonen Bosonenstern Boyer-Lindquist- Koordinaten Bran Brans-Dicke- Theorie Brauner Zwerg Brill-Wellen Bulk C
Carter-KonstanteCasimir-Effekt Cauchy-Fläche Cepheiden Cerenkov-Strahlung Chandrasekhar-Grenze Chaplygin-Gas Chiralität Christoffel-Symbol CMB CNO-Zyklus Comptonisierung Cosmon C-Prozess D
Deep FieldsDerricks Theorem de-Sitter- Kosmos DGP-Szenario Diffeomorphismus differenzielle Rotation Distanzmodul Dodekaeder-Universum Doppler-Effekt Drei-Kelvin-Strahlung Dunkle Energie Dunkle Materie E
Eddington-Finkelstein- KoordinatenEddington-Leuchtkraft Effektivtemperatur Eichtheorie Einstein-Ring Einstein-Rosen- Brücke Einstein-Tensor Eisenlinie Eklipse Ekliptik Ekpyrotisches Modell Elektromagnetismus Elektronenvolt elektroschwache Theorie Elementarladung Energie Energiebedingungen Energie-Impuls-Tensor Entfernungsmodul eos eos-Parameter Epizykel Ereignishorizont erg Ergosphäre eV Extinktion Extradimension extragalaktisch extrasolar extraterrestrisch Exzentrizität F
FalschfarbenbildFanaroff-Riley- Klassifikation Faraday-Rotation Farbindex Farbladung Farbsupraleitung Feldgleichungen Fermi-Beschleunigung Fermionen Fermionenstern Fernparallelismus Feynman-Diagramm FFO FIDO Flachheitsproblem FLRW-Kosmologie Fluchtgeschwindigkeit Frame-Dragging f(R)-Gravitation Friedmann-Weltmodell G
Galaktischer Schwarz-Loch-KandidatGalaxie Gamma Ray Burst Gamma-Zerfall Geodäte Geometrisierte Einheiten Geometrodynamik Gezeitenkräfte Gezeitenradius Gluonen Grad Granulation Gravastern Gravitation Gravitationskollaps Gravitationskühlung Gravitationslinse Gravitationsradius Gravitations- rotverschiebung Gravitationswellen Gravitomagnetismus Graviton GRBR Große Vereinheitlichte Theorien Gruppe GUT GZK-cutoff H
HadronenHadronen-Ära Hamilton-Jacobi- Formalismus Harvard-Klassifikation Hauptreihe Hawking-Strahlung Hawking-Temperatur Helizität Helligkeit Herbig-Haro- Objekt Hertzsprung-Russell- Diagramm Hierarchieproblem Higgs-Teilchen Hilbert-Raum Hintergrundmetrik Hintergrundstrahlung HLX HMXB Holostern Homogenitätsproblem Horizont Horizontproblem Horn-Universum Hubble-Gesetz Hubble-Klassifikation Hubble-Konstante Hydrodynamik hydrostatisches Gleichgewicht Hyperladung Hypernova Hyperonen I
ICInertialsystem Inflation Inflaton intergalaktisch intermediate-mass black hole interplanetar interstellar Isometrien Isospin Isotop ITER J
JahreszeitenJansky Jeans-Masse Jet K
Kaluza-Klein-TheorieKaup-Grenzmasse Kaonen Kataklysmische Veränderliche Keine-Haare- Theorem Kepler-Gesetze Kerr-de-Sitter- Lösung Kerr-Lösung Kerr-Newman- de-Sitter- Lösung Kerr-Newman- Lösung Kerr-Schild- Koordinaten Killing-Felder Killing-Tensor K-Korrektur Koinzidenzproblem Kollapsar Kompaktes Objekt Kompaktheit Kompaktifizierung Kompaneets-Gleichung konforme Transformation Kongruenz Koordinatensingularität Kopenhagener Deutung Korona Korrespondenzprinzip Kosmische Strahlung Kosmische Strings Kosmographie Kosmologie Kosmologische Konstante Kosmologisches Prinzip kovariante Ableitung Kovarianzprinzip Kreisbeschleuniger Kretschmann-Skalar Krümmungstensor Kruskal-Lösung Kugelsternhaufen L
LaborsystemLadung Lagrange-Punkte Lambda-Universum Lapse-Funktion Laserleitstern Lense-Thirring- Effekt Leptonen Leptonen-Ära Leptoquarks Leuchtkraft Leuchtkraftdistanz Levi-Civita- Zusammenhang Licht Lichtjahr Lichtkurve Lie-Ableitung Linearbeschleuniger LINER Linienelement LIRG LMXB LNRF Lokale Gruppe Loop-Quantengravitation Lorentz-Faktor Lorentzgruppe Lorentzinvarianz Lorentz-Kontraktion Lorentz-Transformation Lundquist-Zahl Luxon M
Machscher KegelMachsches Prinzip Machzahl Magnetar magnetische Rotationsinstabilität Magnetohydrodynamik Magnitude marginal gebundene Bahn marginal stabile Bahn Markariangalaxie Maxwell-Tensor Membran-Paradigma Mesonen Metall Metrik Mikroblazar Mikrolinse Mikroquasar Milchstraße Minkowski-Metrik Missing-Mass- Problem mittelschwere Schwarze Löcher MOND Monopolproblem Morphismus M-Theorie Myonen N
NeutrinoNeutronenreaktionen Neutronenstern Newtonsche Gravitation No-Hair-Theorem Nova Nukleon Nukleosynthese Nullgeodäte O
ÖffnungOlbers-Paradoxon O-Prozess Oppenheimer-Volkoff- Grenze optische Tiefe Orthogonalität P
ParadoxonParalleluniversum Parsec partielle Ableitung Pauli-Prinzip Penrose-Diagramm Penrose-Prozess Pentaquark Periastron Perigäum Perihel periodisch persistent Petrov-Klassifikation PG1159-Sterne Phantom-Energie Photon Photonenorbit Photosphäre Pion Pioneer-Anomalie Planck-Ära Planckscher Strahler Planck-Skala Planet Planetarische Nebel Poincarégruppe Poincaré- Transformation Polytrop Population Post-Newtonsche Approximation Poynting-Fluss pp-Kette p-Prozess Prandtl-Zahl primordiale Schwarze Löcher Prinzip minimaler gravitativer Kopplung Protostern Pseudo-Newtonsche Gravitation Pulsar Pulsierendes Universum Pyknonukleare Reaktionen Q
QPOQuant Quantenchromodynamik Quantenelektrodynamik Quantenfeldtheorie Quantengravitation Quantenkosmologie Quantenschaum Quantensprung Quantentheorie Quantenvakuum Quantenzahlen Quark-Ära Quark-Gluonen- Plasma Quarks Quarkstern Quasar quasi-periodisch Quasi-periodische Oszillationen Quelle Quintessenz R
RadioaktivitätRadiogalaxie Radion Randall-Sundrum- Modelle Randverdunklung Raumzeit Rayleigh-Jeans- Strahlungsformel Ray Tracing Reichweite Reionisation Reissner-Nordstrøm- de-Sitter- Lösung Reissner-Nordstrøm- Lösung Rekombination relativistisch Relativitätsprinzip Relativitätstheorie Renormierung Reverberation Mapping Reynolds-Zahl RGB-Bild Ricci-Tensor Riemann-Tensor Ringsingularität Robertson-Walker- Metrik Robinson-Theorem Roche-Volumen Röntgendoppelstern Roter Riese Roter Zwerg Rotverschiebung Rotverschiebungsfaktor r-Prozess RRAT RR Lyrae-Sterne Ruhesystem S
Schallgeschwindigkeitscheinbare Größe Schleifen- Quantengravitation Schwache Wechselwirkung Schwarzer Körper Schwarzer Zwerg Schwarzes Loch Schwarzschild-de-Sitter- Lösung Schwarzschild-Lösung Schwarzschild-Radius Schwerkraft Seltsamer Stern Seltsamkeit Seyfert-Galaxie Singularität skalares Boson SNR Soft Gamma-Ray Repeater Sonne Spektraltyp Spezialität Spezielle Relativitätstheorie Spin Spin-Netzwerk Spinschaum Spin-Statistik-Theorem Spintessenz s-Prozess Standardkerzen Standardmodell Standardscheibe Starke Wechselwirkung Statisches Universum Staubtorus Stefan-Boltzmann- Gesetz stellare Schwarze Löcher Stern Sternentstehung Strange Star Stringtheorien Subraum Supergravitation supermassereiche Schwarze Löcher Supernova Supernovaremnant Superstringtheorie Supersymmetrie Symbiotische Sterne Symmetrie Symmetriebrechung Symmetriegruppe Synchrotron Synchrotronstrahlung Synchrozyklotron T
TachyonTagbogen Tardyon Teilchen Teilchenbeschleuniger Tensorboson Tensoren Tetraden Tetraquark TeVeS Thermodynamik thermonukleare Fusion Tiefenfeldbeobachtung Tierkreis TNO Topologie topologische Defekte Torsionstensor Trägheit transient Transit Triple-Alpha-Prozess T Tauri Stern Tunneleffekt U
ULIRGULX Unifikation Unitarität Universum Unruh-Effekt Urknall V
VakuumVakuumstern Vektorboson Velapulsar Veränderliche Vereinheitlichung Viele-Welten- Theorie VLA VLBI VLT VLTI Voids VSOP W
Walker-Penrose- TheoremWeakonen Weinberg-Winkel Weiße Löcher Weißer Zwerg Wellenfunktion Weylsches Postulat Weyl-Tensor Wheeler-DeWitt- Gleichung Wiensche Strahlungsformel Wilson-Loop WIMP Wolf-Rayet-Stern w-Parameter Wurmlöcher X
X-BosonenX-Kraft X-ray burster Y
Y-BosonenYerkes- Leuchtkraftklassen YSO Yukawa-Potential Z
ZAMOZeit Zeitdilatation Zodiakallicht Zustandsgleichung Zustandsgröße Zwerge Zwergplanet Zwillingsparadoxon Zyklisches Universum Zyklotron |